Abstract:In clinical applications, EEG signals have been facing problems including high acquisition cost and large differences between users, which restrict the development of motor imaging based on EEG signals. Aiming at the task of cross-subject MI-EEG recognition, a transfer learning method based on ensemble tensor domain adaptation was proposed in this paper. Firstly, the improved Euclidean alignment method was used to co-align the multidimensional EEG data to eliminate the edge distribution shift of the original data. Secondly, an improved joint distribution adaptation method based on tensor subspace was proposed, which obtained different classes of mapping subspaces and performed label prediction of target domain samples. In this paper, experiments were carried out on BCI datasets of 200 samples for 7 people and 144 samples for 9 people, which proved that the proposed method had good performance in cross-domain classification recognition with average accuracy 82.18 % and 76.45 %. The effect of each part of the method was also visually verified, which showed the effectiveness of the ensemble method on cross-domain problems.
[1] Jonathan RW. Brain-computer interfaces (BCIs) for communication and control[J]. Computers and Accessibility, 2002,113(6):767-791. [2] Cao L, Wu H, Chen S, et al. A novel deep learning method based on an overlapping time window strategy for brain–computer interface-based stroke rehabilitation[J]. Brain Sciences, 2022, 12(11):1502-1502. [3] Yuan K, Chen C, Wang X, et al. BCI training effects on chronic stroke correlate with functional reorganization in motor-related regions: a concurrent EEG and fMRI study[J]. Brain Sciences, 2021, 11(1):56-56. [4] Kyungae Y, Kiseon K. Multiple kernel learning based on three discriminant features for a P300 speller BCI[J]. Neurocomputing, 2017, 237:133-144. [5] 姜耿, 赵春临. 基于EEG的脑机接口发展综述[J]. 计算机测量与控制,2022, 30(7): 1-8. [6] 罗建功, 丁鹏, 龚安民, 等. 脑机接口技术的应用、产业转化和商业价值[J]. 生物医学工程学杂志,2022, 39(2): 405-415. [7] McClelland RJ. Interpersonal processes and brain sciences — a new anthropology[J]. European Psychiatry, 1996, 11(S4):224s-224s. [8] Luo Y, Lu B. EEG Data augmentation for emotion recognition using a conditional wasserstein GAN[C]//2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Honolulu: IEEE, 2018:2535-2538. [9] Gerald M, Lauren R, Julian A, et al. Metrics for individual differences in EEG response to cognitive workload: Optimizing performance prediction[J]. Personality and Individual Differences, 2017, 118:22-28. [10] Yiqiang C, Jindong W, Meiyu H, et al. Cross-position activity recognition with stratified transfer learning[J]. Pervasive and Mobile Computing, 2019, 57:1-13. [11] Melvin J, Mike S, Quoc VL, et al. Google’s multilingual neural machine translation system: enabling zero-shot translation[J]. Transactions of the Association for Computational Linguistics, 2017, 5:339-351. [12] Zitong W, Rui Y, Mengjie H, et al. A review on transfer learning in EEG signal analysis[J]. Neurocomputing, 2021, 421:1-14. [13] Zanini P, Congedo M, Jutten C, et al. Transfer learning: a riemannian geometry framework with applications to brain-computer interfaces[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(5):1107-1116. [14] He H, Wu D. Transfer Learning for brain-computer interfaces: a Euclidean space data alignment approach[J]. IEEE Transactions On Biomedical Engineering, 2020, 67(2): 399-410. [15] 张学军, 景鹏, 何涛, 等. 基于变分模态分解的癫痫脑电信号分类方法[J]. 电子学报,2020, 48(12): 2469-2475. [16] Weilong Z, Jiayi Z, Baoliang L. Identifying stable patterns over time for emotion recognition from EEG[J]. IEEE Trans Affective Computing, 2019, 10(3):417-429. [17] Shi L, Jiao Y, Lu B. Differential entropy feature for EEG-based vigilance estimation[C]//2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Osaka: IEEE, 2013:6627-6630. [18] Jiang Z, Xu P, Du Yongbin, et al. Balanced distribution adaptation for metal oxide semiconductor gas sensor array drift compensation[J]. Sensors, 2021, 21(10):3043-3043. [19] Hyohyeong K, Yunjun N, Seungjin C. Composite common spatial pattern for subject-to-subject transfer[J]. IEEE Signal Process Lett, 2009, 16(8): 683-686. [20] Yiming J, Mahta M, Virginia RDS. Adaptive CSP with subspace alignment for subject-to-subject transfer in motor imagery brain-computer interfaces[C]//2018 6th International Conference on Brain-Computer Interface (BCI). Gangwon: IEEE, 2018:1-4. [21] Fabien L, Cuntai G. Learning from other subjects helps reducing Brain-Computer Interface calibration time[C]//2010 IEEE International Conference on Acoustics, Speech and Signal Processing. Dallas: IEEE, 2010:614-617. [22] Dai M, Zheng D, Liu S, et al. Transfer kernel common spatial patterns for motor imagery brain-computer interface classification[J]. Computational and Mathematical Methods in Medicine, 2018, 2018:9-9. [23] Zidong W, Bachar Z, Jinling L,et al. A novel neural network approach to cDNA microarray image segmentation[J]. Computer Methods and Programs in Biomedicine, 2013, 111(1):189-198. [24] Yingying J, Yini D, Yun L, et al. Driver sleepiness detection from EEG and EOG signals using GAN and LSTM networks[J]. Neurocomputing, 2020, 408:100-111. [25] 韦泓妤, 陈黎飞, 罗天健. 运动想象脑电信号的跨域特征学习方法[J]. 计算机应用研究,2022, 39(8): 2340-2346. [26] Zhang W, Wu D. Manifold embedded knowledge transfer for brain-computer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(5):1117-1127. [27] 王行愚, 金晶, 张宇, 等. 脑控:基于脑-机接口的人机融合控制[J]. 自动化学报,2013, 39(3): 208-221. [28] 赵地, 卜刚. 脑机接口信号处理的研究进展[J]. 人工智能,2021,6(3): 26-32. [29] 张章, 周新淳, 赵鸿浩, 等. 基于EEG信号特征提取与SVM算法的睡眠自动分期[J]. 计算机与数字工程,2022, 50(5): 936-941. [30] 张博, 刘璐, 杨立波, 等. 基于时域、频域脑电(EEG)特征情感分类研究[J]. 长春理工大学学报(自然科学版),2021, 44(5): 51-57. [31] 王登, 苗夺谦, 王睿智. 一种新的基于小波包分解的EEG特征抽取与识别方法研究[J]. 电子学报,2013, 41(1): 193-198. [32] Wu S, Yan Y, Tang H, et al. Structured discriminative tensor dictionary learning for unsupervised domain adaptation[J]. Neurocomputing, 2021, 442:281-295. [33] Hao L, Lei Z, Zhiguo C, et al. When unsupervised domain adaptation meets tensor representations[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017:599-608. [34] Tamara GK, Brett WB. Tensor decompositions and applications[J]. SIAM Review, 2009, 51(3):455-500. [35] Anh HP, Andrzej C. Tensor decompositions for feature extraction and classification of high dimensional datasets[J]. Nonlinear Theory and its Applications IEICE, 2010, 1(1):37-68. [36] Fengyu C, Qiu-Hua L, Li-Dan K, et al. Tensor decomposition of EEG signals: a brief review[J]. Journal of Neuroscience Methods, 2015, 248:59-69. [37] Tucker LR. Some mathematical notes on three-mode factor analysis[J]. Psychometrika, 1966, 31(3):279-311. [38] Lieven DL, Bart DM, Joos V. A multilinear singular value decomposition[J]. SIAM Journal on Matrix Analysis and Applications, 2006, 21(4): 1253-1278. [39] Vannieuwenhoven N, Vandebril R, Meerbergen K. A new truncation strategy for the higher-order singular value decomposition[J]. SIAM Journal on Scientific Computing, 2012, 34(2):1027-1052. [40] Van der Maaten L, Hinton GE. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9:2579-2605.