Source Localization Study of Simultaneous EEG-fMRI in Emotion Reappraisal Based on Dipole Feature Optimization
Zhang Wei1,2, Jiang Zhongyi2,3, Li Wenjie1,2, Zou Ling1,2*
1(School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, Jiangsu, China) 2(Changzhou Key Laboratory of Biomedical Information Technology, Changzhou 213164, Jiangsu, China) 3(Aliyun School of Big Data, Changzhou University, Changzhou 213164, Jiangsu, China)
摘要为研究情绪重评时的大脑皮层源活动,针对情绪重评实验范式下采集的15例健康人同步EEG-fMRI数据,首先提出一种新颖的基于偶极子特征优化的融合源定位方法:根据fMRI加权最小范数估计源定位结果,采用20 ms EEG滑动时间窗,提取每个时窗内的偶极子空间融合特征,将其作为动态融合先验进行加权最小范数估计溯源;随后将该结果与fMRI加权最小范数估计源定位结果进行情绪重评机制上的对比;最后采用样本熵进行脑电源复杂度分析。实验结果表明,该方法可以在高时间和空间分辨率下,有效地追踪情绪重评任务下大脑皮层上的脑电源动态并识别出相关脑区。情绪重评过程中,随着后枕顶叶晚期正电位的出现,显著活跃脑区从左顶叶下部、右侧额中回下部、左侧脑岛转移到右侧颞上回和左外侧枕叶,最后在晚期正电位慢波阶段激活了右侧梭状回、右侧额中回下部和右侧扣带回峡部(P<0.05)。通过脑电源样本熵的计算,提取出被试在接受不同情绪刺激后1500 ms内的显著脑区(P<0.05):情绪响应的活跃脑区为左外侧枕叶(负性:0.688±0.124,中性:0.590±0.126);情绪重评的活跃脑区为右侧额中回下部(负性重评:0.814±0.114,负性:0.736±0.123);情绪重评的抑制脑区为右侧颞上回(负性:0.642±0.152,负性重评:0.546±0.090)。这些结果为情绪重评相关的皮层脑电源定位研究提供了脑区参考。
Abstract:To investigate the source activity of cerebral cortex during emotion reappraisal, a novel fused source localization method based on the dipole feature optimization was proposed for the simultaneous EEG-fMRI data of 15 healthy subjects acquired by the experimental paradigm of emotion reappraisal. First, fMRI-weighted minimum norm estimate was performed. Then 20 ms EEG sliding time window was used to extract dipole spatial fused feature in each time window. A weighted minimum norm estimation was subsequently performed based on the dynamic fused prior. The mechanism comparison of emotion reappraisal was conducted between the results of two source localization methods. Finally, the sample entropy was used to analyze the complexity of EEG source. The experimental results showed that the proposed method could effectively track the dynamics of EEG source on the cerebral cortex and recognized related brain regions during emotion reappraisal task with high temporal and spatial resolutions. In the process of emotion reappraisal, with the emergence of late positive potential in the posterior occipital parietal lobe, the active brain regions transferred from the left inferior parietal lobe, right rostral middle frontal gyrus, left insula to the right superior temporal gyrus and left lateral occipital lobe, and finally activated the right fusiform gyrus, right rostral middle frontal gyrus and right isthmus cingulate gyrus in the late positive potential slow-wave stage (P<0.05). By calculating the sample entropy of EEG source, the significant brain regions were extracted after the subjects received different emotional stimuli within 1500 ms (P<0.05). The active brain region for emotion response was left lateral occipital lobe (negative: 0.688±0.124, neutral: 0.590±0.126). The active brain region for emotion reappraisal was right rostral middle frontal gyms (negative reappraisal: 0.814±0.114, negative: 0.736±0.123). The inhibited brain region for emotion reappraisal was right superior temporal gyrus (negative: 0.642±0.152, negative reappraisal: 0.546±0.090). The obtained results provided the reference of brain regions for the study of cortex EEG source localization related to emotion reappraisal.
张蔚, 姜忠义, 李文杰, 邹凌. 基于偶极子特征优化的情绪重评同步EEG-fMRI源定位研究[J]. 中国生物医学工程学报, 2021, 40(3): 280-290.
Zhang Wei, Jiang Zhongyi, Li Wenjie, Zou Ling. Source Localization Study of Simultaneous EEG-fMRI in Emotion Reappraisal Based on Dipole Feature Optimization. Chinese Journal of Biomedical Engineering, 2021, 40(3): 280-290.
[1] Etkin A, Büchel C, Gross JJ. The neural bases of emotion regulation[J]. Nature Reviews Neuroscience, 2015, 16(11): 693-700. [2] Ling Zou, Qian Guo, Yi Xu, et al. Functional connectivity analysis of the neural bases of emotion regulation: A comparison of independent component method with density-based k-means clustering method[J]. Technology and Health Care, 2016, 24(S2): S817-S825. [3] Ochsner KN, Silvers JA, Buhle JT. Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion[J]. Annals of the New York Academy of Sciences, 2012, 1251: E1-E24. [4] 邹凌, 徐逸, 周仁来. 密度K-means算法在认知重评脑功能连接中的应用[J]. 计算机辅助设计与图形学学报, 2015, 27 (5): 841-846. [5] Wang Kai, Li Wenjie, Dong Li, et al. Clustering-constrained ICA for ballistocardiogram artifacts removal in simultaneous EEG-fMRI [J]. Frontiers in Neuroscience, 2018, 12: 59. [6] Moser JS, Hartwig R, Moran TP, et al. Neural markers of positive reappraisal and their associations with trait reappraisal and worry[J]. Journal of Abnormal Psychology, 2014, 123(1): 91-105. [7] 邹凌, 严永, 杨彪,等. 基于同步 EEG-fMRI 采集的情绪认知重评数据特征融合分析研究[J]. 自动化学报, 2016, 42(5): 771-781. [8] Ramon C, Schimpf PH, Haueisen J. Influence of head models on EEG simulations and inverse source localizations[J]. BioMedical Engineering Online, 2006, 5(1): 1-13. [9] Guo Qian, Zhou Tiantong, Li Wenjie, et al. Single-trial EEG-informed fMRI analysis of emotional decision problems in hot executive function[J]. Brain & Behavior, 2017, 7(7): e00728. [10] Friston K, Harrison L, Daunizeau J, et al. Multiple sparse priors for the M/EEG inverse problem[J]. NeuroImage, 2008, 39(3): 1104-1120. [11] Ou W, Nummenmaa A, Ahveninen J, et al. Multimodal functional imaging using fMRI-informed regional EEG/MEG source estimation [J]. Neuroimage, 2010, 52(1): 97-108. [12] Lei Xu, Xu Peng, Luo Cheng, et al. fMRI functional networks for EEG source imaging [J]. Human Brain Mapping, 2011, 32(7): 1141-1160. [13] Liu AK, Dale AM, Belliveau JW. Monte Carlo simulation studies of EEG and MEG localization accuracy [J]. Human Brain Mapping, 2002, 16(1): 47-62. [14] Nguyen T, Potter T, Grossman R, et al. Characterization of dynamic changes of current source localization based on spatiotemporal fMRI constrained EEG source imaging [J]. J Neural Eng, 2018, 15(3): 1-10. [15] Xu Jing, Sheng Jingwei, Qian Tianyi, et al. EEG/MEG source imaging using fMRI informed time-variant constraints [J]. Hum Brain Mapp, 2018, 39(4): 1700-1711. [16] Nguyen T, Zhou Tiantong, Potter T, et al. The cortical network of emotion regulation: Insights from advanced EEG-fMRI integration analysis [J]. IEEE Trans Med Imaging, 2019, 38(10): 2423-2433. [17] Nezafati M, Temmar H, Keilholz SD. Functional MRI signal complexity analysis using sample entropy [J]. Frontiers in Neuroscience, 2020, 14: 700. [18] Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy [J]. American Journal of Physiology-Heart and Circulatory Physiology, 2000, 278(6): H2039-H2049. [19] Monti MM. Statistical analysis of fMRI time-series: A critical review of the GLM approach [J]. Frontiers in Human Neuroscience, 2011, 5: 28. [20] Liu AK, Belliveau JW, Dale AM. Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations[J]. Proceedings of the National Academy of Sciences, 1998, 95(15): 8945-8950. [21] Nguyen T, Potter T, Nguyen T, et al. EEG source imaging guided by spatiotemporal specific fMRI: Toward an understanding of dynamic cognitive processes [J]. Neural Plast, 2016: 4182483. [22] Silvers JA, McRae K, Gabrieli JD, et al. Age-related differences in emotional reactivity, regulation, and rejection sensitivity in adolescence [J]. Emotion, 2012, 12(6): 1-13. [23] Ozdemir RA, Tadayon E, Boucher P, et al. Individualized perturbation of the human connectome reveals reproducible biomarkers of network dynamics relevant to cognition[J]. Proc Natl Acad Sci USA, 2020, 117(14): 8115-8125. [24] McRae K, Gross JJ. Emotion regulation[J]. Emotion, 2020, 20(1): 1-9. [25] Ochsner KN, Gross JJ. Handbook of Emotion Regulation [M]. The New York: Guilford Press, 2014:23-42. [26] Kotz SA, Paulmann S. Emotion, language, and the brain [J]. Language and Linguistics Compass, 2011, 5(3): 108-125. [27] Wager TD, Davidson ML, Hughes BL, et al. Prefrontal-subcortical pathways mediating successful emotion regulation [J]. Neuron, 2008, 59(6): 1037-1050. [28] Buhle JT, Silvers JA, Wager TD, et al. Cognitive Reappraisal of emotion: a meta-analysis of human neuroimaging studies [J]. Cerebral Cortex, 2014, 24(11): 2981-2990. [29] Silvers JA, Insel C, Powers A, et al. vlPFC-vmPFC-amygdala interactions underlie age-related differences in cognitive regulation of emotion[J]. Cereb Cortex, 2017, 27(7): 3502-3514.