网站首页            期刊简介             编委会             投稿指南             期刊订阅             下载中心             在线留言            联系我们             English
  2025年5月4日 星期日  
文章快速检索
中国生物医学工程学报  2025, Vol. 44 Issue (1): 21-33    DOI: 10.3969/j.issn.0258-8021.2025.01.003
  论著 本期目录 | 过刊浏览 | 高级检索 |
基于层级化分数阶语谱图的帕金森病构音障碍分类
薛在发1,2, 卢辉斌1,2, 林丽琴3, 张涛1,2*
1(燕山大学信息科学与工程学院,河北 秦皇岛 066004)
2(河北省信息传输与信号处理实验室,河北 秦皇岛 066004)
3(杭州海康威视数字技术股份有限公司硬件产品研发中心, 杭州 310051)
Classification of Dysphonia in Parkinson′s Disease Based on Hierarchical Fractional Spectrogram
Xue Zaifa1,2, Lu Huibin1,2, Lin Liqin3, Zhang Tao1,2*
1(School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China)
2(Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao 066004, Hebei, China)
3(Hardware Product R&D Center, Hangzhou Hikvision Digital Technology Co., Ltd., Hangzhou 310051, China)
全文: PDF (4870 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 构音障碍是帕金森病的早期症状之一。现有的基于深度学习的帕金森病构音障碍分类大多根据语谱图和卷积神经网络分析,但两者分别存在角度单一和感受野受限等不足,导致信息提取不充分。本研究提出了一种基于层级化分数阶语谱图的帕金森病分类方法。首先,通过增加角度旋转因子,将构音信号转化为分数阶语谱图以增强从不同角度提取能量信息的能力;其次,将Swin Transformer网络在ImageNet上预训练的参数进行迁移和微调以解决数据量小的弊端;最后,结合层级化结构和基于偏移窗口的自注意力机制扩大感受野和实现多尺度信息融合,从而有效提升帕金森病分类精度。在Database-1 (240个样本,由伊斯坦布尔大学医学院神经内科采集)和Database-2 (1 404个样本,由唐山工人医院和开滦精神卫生中心合作采集)上的验证结果表明,该方法具有良好的稳定性,且在两个数据集上的准确率分别达到了97.80 %和98.75 %,性能均优于所对比的先进方法。本研究所提出方法为帕金森病构音障碍分析提供了新的视角。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛在发
卢辉斌
林丽琴
张涛
关键词 帕金森病构音障碍分数阶语谱图参数迁移层级化结构    
Abstract:Dysphonia is one of the early symptoms of Parkinson′s disease. Most of the existing deep learning-based classifications of dysphonia in Parkinson′s disease are based on spectrogram and convolutional neural network, but both of them suffer from deficiencies such as single angle and restricted receptive field, respectively, which lead to insufficient information extraction. This paper proposed a classification method for Parkinson′s disease based on hierarchical fractional spectrogram. Firstly, by adding angle rotation factors, the dysphonia signal was transformed into the fractional spectrogram to enhance the ability of extracting energy information from different angles. Then the parameters of the Swin Transformer network pre-trained on ImageNet were transferred and fine-tuned to solve the problem of small data size. Finally, the combination of hierarchical structure and shifted window-based self-attention mechanism expanded the receptive field and realized multi-scale information fusion, which effectively improved the Parkinson′s disease classification accuracy. The results on Database-1 (240 samples collected by the Department of Neurology of Medicine, Istanbul University) and Database-2 (1 404 samples collected by Tangshan Workers′ Hospital and Kailuan Mental Health Center) showed good stability of the proposed method and achieved accuracy of 97.80 % and 98.75 % on the two datasets, respectively, with better performance than all compared advanced methods. Our proposed method provides a new perspective for analyzing articulation disorders in Parkinson′s disease.
Key wordsParkinson′s disease    dysphonia    fractional spectrogram    parameter transfer    hierarchical structure
收稿日期: 2024-01-11     
PACS:  R318  
基金资助:国家自然科学基金(62176229);河北省重点实验室项目(202250701010046);黑龙江省自然科学基金(LH2023H029)
通讯作者: *E-mail: zhtao@ysu.edu.cn   
引用本文:   
薛在发, 卢辉斌, 林丽琴, 张涛. 基于层级化分数阶语谱图的帕金森病构音障碍分类[J]. 中国生物医学工程学报, 2025, 44(1): 21-33.
Xue Zaifa, Lu Huibin, Lin Liqin, Zhang Tao. Classification of Dysphonia in Parkinson′s Disease Based on Hierarchical Fractional Spectrogram. Chinese Journal of Biomedical Engineering, 2025, 44(1): 21-33.
链接本文:  
http://cjbme.csbme.org/CN/10.3969/j.issn.0258-8021.2025.01.003     或     http://cjbme.csbme.org/CN/Y2025/V44/I1/21
版权所有 © 2015 《中国生物医学工程学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发