Research Progress of High Frequency Electrocardiography
Xing Yantao1, Li Jiayi1, Xiao Zhijun1, Li Jianqing1,2, Liu Chengyu1#*
1(State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China) 2(School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China)
Abstract:The invention of the electrocardiogram provides rich information for the diagnosis, prevention, and treatment of cardiovascular diseases, but the information behind the electrocardiogram is far more than that. The new generation of high-frequency ECG technology can mine deeper human physiological information and further make up for the shortcomings of conventional ECG in the diagnosis of myocardial ischemia and the evaluation of autonomic nerves system status. Starting from the principle and development history of high-frequency ECG technology, this paper summarized the key technologies of high-frequency ECG technology in four aspects including signal sensing, acquisition system, signal denoising, and feature engineering. Based on the development of these technologies, this paper further summarized the achievements and applications of high-frequency ECG technology in the clinical practice of myocardial ischemia and autonomic nerves system status assessment, and analyzed and discussed the technical limitations of high-frequency ECG in practical application and the future development direction.
作者简介: #中国生物医学工程学会高级会员(Senior member, Chinese Society of Biomedical Engineering)
引用本文:
邢彦涛, 李嘉懿, 肖志军, 李建清, 刘澄玉. 高频心电技术研究进展[J]. 中国生物医学工程学报, 2023, 42(4): 461-474.
Xing Yantao, Li Jiayi, Xiao Zhijun, Li Jianqing, Liu Chengyu. Research Progress of High Frequency Electrocardiography. Chinese Journal of Biomedical Engineering, 2023, 42(4): 461-474.
[1] 《中国心血管健康与疾病报告2021》编写组. 《中国心血管健康与疾病报告2021》概述[J].中国心血管病研究,2022,20(7):577-596. [2] 全国老龄办. 中国人口老龄化发展趋势预测研究报告 [R]. 2018. [3] 刘澄玉, 杨美程, 邸佳楠, 等. 穿戴式心电: 发展历程、核心技术与未来挑战[J]. 中国生物医学工程学报,2019,38(6):641-652. [4] Escalona OJ, Mitchell RH, Balderson DE, et al. Fast and reliable QRS alignment technique for high-frequency analysis of signal-averaged ECG [J]. Medical & Biological Engineering & Computing, 1993, 31(1): S137-S146. [5] Ringborn M, Pahlm O, Wagner GS, et al. The absence of high-frequency QRS changes in the presence of standard electrocardiographic QRS changes of old myocardial infarction[J]. American Heart Journal, 2001, 141(4): 573-579. [6] Lipton JA, Warren SG, Broce M, et al. High-frequency QRS electrocardiogram analysis during exercise stress testing for detecting ischemia[J]. International Journal of Cardiology, 2008, 124(2): 198-203. [7] Kusayama T, Wong J, Liu X, et al. Simultaneous noninvasive recording of electrocardiogram and skin sympathetic nerve activity (neuECG) [J]. Nature Protocols, 2020, 15(5): 1853-1877. [8] Rahman AM, Gedevanishvili A, Bungo MW, et al. Non-invasive detection of coronary artery disease by a newly developed high-frequency QRS electrocardiogram[J]. Physiological Measurement, 2004, 25(4): 957-965. [9] Clifford GD, Azuaje F, McSharry PE. Advanced Methods and Tools for ECG Data Analysis [M]. London: Artech House, 2006: 1-366. [10] Hosoya Y, Ikeda K, Komatsu T, et al. Spectral analysis of epicardial 60-lead electrograms in dogs with 4-week-old myocardial infarction[J]. Journal of Electrocardiology, 2001, 34(1): 15-24. [11] 张颖, 刘兴鹏, 闫倩, 等.健康成年人群碎裂QRS波群的检出与意义[J].临床心血管病杂志,2011,27(4):299-302. [12] Doytchinova A, Hassel JL, Yuan Y, et al. Simultaneous noninvasive recording of skin sympathetic nerve activity and electrocardiogram[J]. Heart Rhythm, 2017, 14(1): 25-33. [13] Chi YM, Jung TP, Cauwenberghs G. Dry-contact and noncontact biopotential electrodes: methodological review [J]. IEEE Rev Biomed Eng, 2010, 3: 106-119. [14] Trägårdh E, Pahlm O, Hedén B, et al. Serial changes in the high‐frequency ECG during the first year following acute myocardial infarction[J]. Clinical Physiology and Functional Imaging, 2006, 26(5): 296-300. [15] Jiang Z, Zhao Y, Doytchinova A, et al. Using skin sympathetic nerve activity to estimate stellate ganglion nerve activity in dogs[J]. Heart Rhythm, 2015, 12(6): 1324-1332. [16] Xing Y, Zhang Y, Yang C, et al. Design and evaluation of an autonomic nerve monitoring system based on skin sympathetic nerve activity[J]. Biomedical Signal Processing and Control, 2022, 76: 103681. [17] Levin AB. A simple test of cardiac function based upon the heart rate changes induced by the Valsalva maneuver[J]. The American journal of cardiology, 1966, 18(1): 90-99. [18] Kusayama T, Wan J, Doytchinova A, et al. Skin sympathetic nerve activity and the temporal clustering of cardiac arrhythmias[J]. JCI Insight, 2019, 4(4): 1-15. [19] Uradu A, Wan J, Doytchinova A, et al. Skin sympathetic nerve activity precedes the onset and termination of paroxysmal atrial tachycardia and fibrillation[J]. Heart Rhythm, 2017, 14(7): 964-971. [20] 杨旭明, 李小彩, 王可, 等. 心电高频信息与冠心病[J]. 洛阳医专学报, 2000(2): 161-163. [21] Reid WD, Caldwell S H. Research in electrocardiography[J]. Annals of Internal Medicine, 1933, 7(3): 369-380. [22] Langner PH. High fidelity electrocardiography: Further studies including the comparative performance of four different electrocardiographs[J]. American Heart Journal, 1953, 45(5):683-690. [23] Dunn FL, Rahm Jr WE. Electrocardiography: modern trends in instrumentation and visual and direct recording electrocardiography[J]. Annals of Internal Medicine, 1950, 32(4): 611-626. [24] Langner Jr PH. Further studies in high fidelity electrocardiography: myocardial infarction[J]. Circulation, 1953, 8(6): 905-913. [25] Holcroft JW, Liebman J. Notching of the QRS complex in high frequency electrocardiograms of normal children and in children with rheumatic fever[J]. Journal of Electrocardiology, 1970, 3(2): 133-146. [26] Flowers NC, Horan LG. Diagnostic import of QRS notching in high-frequency electrocardiograms of living subjects with heart disease[J]. Circulation, 1971, 44(4): 605-611. [27] 张春华, 朱卫平, 张云沣, 等. 43例冠心病患者的高频切迹与冠脉造影结果的相关分析[J]. 山东师大学报(自然科学版), 1991(4): 96-99. [28] Langner Jr PH, DeMott T, Hussey M. High-fidelity electrocardiography: effects of induced localized myocardial injury in the dog[J]. American Heart Journal, 1966, 71(6): 790-796. [29] Sapoznikov D, Tzivoni D, Weinman J, et al. High fidelity ecg in the diagnosis of occult coronary artery disease: a study of patients with normal conventional ecg[J]. Journal of Electrocardiology, 1977, 10(2): 137-148. [30] Langner PH, Geselowitz DB, Briller SA. Wide band recording of the electrocardiogram and coronary heart disease[J]. American Heart Journal, 1973, 86(3): 308-317. [31] 第四届全国高频心电图研究会领导小组. 关于高频心电图操作规范和判断标准的建议[J]. 心功能杂志, 1993(3): 7-8. [32] Cain ME, Ambos HD, Witkowski FX, et al. Fast-fourier transform analysis of signal-averaged electrocardiograms for identification of patients prone to sustained ventricular tachycardia[J]. Circulation, 1984, 69(4): 711-720. [33] Haberl R, Jilge G, Pulter R, et al. Comparison of frequency and time domain analysis of the signal-averaged electrocardiogram in patients with ventricular tachycardia and coronary artery disease: methodologic validation and clinical relevance[J]. Journal of the American College of Cardiology, 1988, 12(1): 150-158. [34] Kusayama T, Douglas II A, Wan J, et al. Skin sympathetic nerve activity and ventricular rate control during atrial fibrillation[J]. Heart Rhythm, 2020, 17(4): 544-552. [35] He W, Tang Y, Meng G, et al. Skin sympathetic nerve activity in patients with obstructive sleep apnea[J]. Heart Rhythm, 2020, 17(11): 1936-1943. [36] Zhang Y, Wang J, Xing Y, et al. Dynamics of cardiac autonomic responses during hemodialysis measured by heart rate variability and skin sympathetic nerve activity: the impact of interdialytic weight gain[J]. Frontiers in Physiology, 2022, 13: 909-920. [37] Liu C, Zhang X, Zhao L, et al. Signal quality assessment and lightweight QRS detection for wearable ECG SmartVest system[J]. IEEE Internet of Things Journal, 2018, 6(2): 1363-1374. [38] Ankhili A, Tao X, Cochrane C, et al. Washable and reliable textile electrodes embedded into underwear fabric for electrocardiography (ECG) monitoring[J]. Materials, 2018, 11(2): 256-267. [39] Eggins BR. Skin contact electrodes for medical applications[J]. Analyst, 1993, 118(4): 439-442. [40] Fan X, Nie W, Tsai H, et al. PEDOT: PSS for flexible and stretchable electronics: modifications, strategies, and applications[J]. Advanced Science, 2019, 6(19): 1900813. [41] Yang H, Ji S, Chaturvedi I, et al. Adhesive biocomposite electrodes on sweaty skin for long-term continuous electrophysiological monitoring[J]. ACS Materials Letters, 2020, 2(5): 478-484. [42] Spach MS, Barr RC, Havstad JW, et al. Skin-electrode impedance and its effect on recording cardiac potentials[J]. Circulation, 1966, 34(4): 649-656. [43] Wang S, Xu J, Wang W, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array[J]. Nature, 2018, 555(7694): 83-88. [44] Satija U, Ramkumar B, Manikandan MS. Real-time signal quality-aware ECG telemetry system for IoT-based health care monitoring[J]. IEEE Internet of Things Journal, 2017, 4(3): 815-823. [45] Spanò E, Di Pascoli S, Iannaccone G. Low-power wearable ECG monitoring system for multiple-patient remote monitoring[J]. IEEE Sensors Journal, 2016, 16(13): 5452-5462. [46] Hoffmann KP, Ruff R. Flexible dry surface-electrodes for ECG long-term monitoring[C]//2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Lyon: IEEE, 2007: 5739-5742. [47] Tong DA, Bartels KA, Honeyager KS. Adaptive reduction of motion artifact in the electrocardiogram[C]//Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society][Engineering in Medicine and Biology. Houston: IEEE, 2002, 2: 1403-1404. [48] Baranchuk A, Kang J, Shaw C, et al. Electromagnetic interference of communication devices on ecg machines[J]. Clinical Cardiology: An International Indexed and Peer-Reviewed Journal for Advances in the Treatment of Cardiovascular Disease, 2009, 32(10): 588-592. [49] Zhang N, Yue L, Xie Y, et al. A novel antibacterial membrane electrode based on bacterial cellulose/polyaniline/agno 3 composite for bio-potential signal monitoring[J]. IEEE Journal of Translational Engineering in Health and Medicine, 2018, 6: 1-10. [50] Zhang L, Kumar KS, He H, et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring[J]. Nature Communications, 2020, 11(1): 1-13. [51] Qin Q, Li J, Yao S, et al. Electrocardiogram of a silver nanowire based dry electrode: quantitative comparison with the standard Ag/AgCl gel electrode[J]. IEEE Access, 2019, 7: 20789-20800. [52] Kisannagar RR, Jha P, Navalkar A, et al. Fabrication of silver nanowire/polydimethylsiloxane dry electrodes by a vacuum filtration method for electrophysiological signal monitoring[J]. ACS Omega, 2020, 5(18): 10260-10265. [53] Pani D, Dessì A, Saenz-Cogollo JF, et al. Fully textile, PEDOT: PSS based electrodes for wearable ECG monitoring systems[J]. IEEE Transactions on Biomedical Engineering, 2015, 63(3): 540-549. [54] Ankhili A, Zaman SU, Tao X, et al. How to connect conductive flexible textile tracks to skin electrocardiography electrodes and protect them against washing[J]. IEEE Sensors Journal, 2019, 19(24): 11995-12002. [55] Yapici MK, Alkhidir T, Samad YA, et al. Graphene-clad textile electrodes for electrocardiogram monitoring[J]. Sensors and Actuators B: Chemical, 2015, 221: 1469-1474. [56] 崔钟玺, 杜卫国, 常建民, 等. 自制高频心电示波器的临床应用[J]. 心脏杂志, 1993, 2(1): 143-143. [57] 文治洪, 董秀珍, 杨国胜, 等. 高频心电图的微机处理系统[J]. 医疗设备信息, 1990, 3(1): 1-2. [58] Xing Y, Zhang Y, Xiao Z, et al. An artifact-resistant feature sknaer for quantifying the burst of skin sympathetic nerve activity signal[J]. Biosensors, 2022, 12(5): 355-371. [59] Diedrich A, Charoensuk W, Brychta RJ, et al. Analysis of raw microneurographic recordings based on wavelet de-noising technique and classification algorithm: wavelet analysis in microneurography[J]. IEEE Transactions on Biomedical Engineering, 2003, 50(1): 41-50. [60] Brychta RJ, Tuntrakool S, Appalsamy M, et al. Wavelet methods for spike detection in mouse renal sympathetic nerve activity[J]. IEEE Transactions on Biomedical Engineering, 2006, 54(1): 82-93. [61] Tan CO, Taylor JA, Ler ASH, et al. Detection of multifiber neuronal firings: a mixture separation model applied to sympathetic recordings[J]. IEEE Transactions on Biomedical Engineering, 2008, 56(1): 147-158. [62] Zaydens E, Taylor JA, Cohen MA, et al. Characterization and modeling of muscle sympathetic nerve spiking[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2914-2924. [63] Goldberger AL, Bhargava V, Froelicher V, et al. Effect of myocardial infarction on high-frequency qrs potentials[J]. Circulation, 1981, 64(1): 34-42. [64] Abboud S, Belhassen B, Miller HI, et al. High frequency electrocardiography using an advanced method of signal averaging for non-invasive detection of coronary artery disease in patients with normal conventional electrocardiogram[J]. Journal of Electrocardiology, 1986, 19(4): 371-380. [65] Acharya UR, Fujita H, Oh SL, et al. Application of deep convolutional neural network for automated detection of myocardial infarction using ecg signals[J]. Information Sciences, 2017, 415: 190-198. [66] Liu C, Lee CH, Lin SF, et al. Temporal clustering of skin sympathetic nerve activity bursts in acute myocardial infarction patients[J]. Frontiers in Neuroscience, 2021, 15: 720827. [67] Chen JJ, Lin C, Hsiao W, et al. Complex dynamics of skin sympathetic nerve activities as a prognostic predictor for critically ill patients[J]. Journal of the Formosan Medical Association, 2021, 120(1): 660-667. [68] 杨杰书. 临床心血管疾病综合治疗学[M]. 长春: 吉林科学技术出版社, 2019. [69] 王淑芳. 动态心电图对心肌缺血诊断价值的研究进展[J]. 中国医疗器械信息, 2022, 28(4): 28-30. [70] Schick TD, Powers SR. Spectral analysis of the high-frequency electrocardiogram in contusive myocardial injury[J]. Annals of Biomedical Engineering, 1978, 6(2): 154-160. [71] Durrer D, Van Lier AAW, Büller J. Epicardial and intramural excitation in chronic myocardial infarction[J]. American Heart Journal, 1964, 68(6): 765-776. [72] Vanderark CR, Reynolds EW. Genesis of high frequency notching of QRS complexes in an in vivo cardiac model[J]. Circulation, 1975, 51(2): 257-262. [73] Weinberg SL, Reynolds RW, Rosenman RH, et al. Electrocardiographic changes associated with patchy myocardial fibrosis in the absence of confluent myocardial infarction: an anatomic correlative study[J]. American Heart Journal, 1950, 40(5): 745-759. [74] 叶桂芬, 周德莲, 巨天赋. 心电图负荷试验、动态心电图、心脏超声、核素心肌显像与冠脉造影对冠心病诊断价值的对比分析[J]. 内科, 2014, 9(3): 289-291. [75] 张卫国, 崔炜. 如何看待CT冠状动脉造影[J]. 临床荟萃, 2018, 33(6): 540-540. [76] 中华医学会, 中华医学会杂志社, 中华医学会全科医学分会. 稳定性冠心病基层诊疗指南(2020年)[J]. 中华全科医师杂志, 2021, 20(3): 265-273. [77] Amit G, Granot Y, Abboud S. Quantifying QRS changes during myocardial ischemia: insights from high frequency electrocardiography [J]. Journal of Electrocardiology, 2014, 47(4): 505-511. [78] Lavian G, Kopelman D, Shenhav A, et al. In vivo extracellular recording of sympathetic ganglion activity in a chronic animal model[J]. Clinical Autonomic Research, 2003, 13(1): i83-i88. [79] Robinson EA, RHEE KS, Doytchinova A, et al. Estimating sympathetic tone by recording subcutaneous nerve activity in ambulatory dogs[J]. Journal of Cardiovascular Electrophysiology, 2015, 26(1): 70-78. [80] Kumar A, Wright K, Uceda DE, et al. Skin sympathetic nerve activity as a biomarker for syncopal episodes during a tilt table test[J]. Heart Rhythm, 2020, 17(5): 804-812. [81] Han J, Ackerman MJ, Moir C, et al. Left cardiac sympathetic denervation reduces skin sympathetic nerve activity in patients with long QT syndrome[J]. Heart Rhythm, 2020, 17(10): 1639-1645. [82] Zhang P, Liang JJ, Cai C, et al. Characterization of skin sympathetic nerve activity in patients with cardiomyopathy and ventricular arrhythmia[J]. Heart Rhythm, 2019, 16(11): 1669-1675. [83] Yuan Y, Hassel JL, Doytchinova A, et al. Left cervical vagal nerve stimulation reduces skin sympathetic nerve activity in patients with drug resistant epilepsy[J]. Heart Rhythm, 2017, 14(12): 1771-1778. [84] Park HW, Shen MJ, Lin SF, et al. Neural mechanisms of atrial fibrillation[J]. Current Opinion in Cardiology, 2012, 27(1): 24-27. [85] Chiou CW, Eble JN, Zipes DP. Efferent vagal innervation of the canine atria and sinus and atrioventricular nodes: the third fat pad[J]. Circulation, 1997, 95(11): 2573-2584. [86] 杨淋,吴晓玲,丁昭鑫,等. 不同风险因素与心房颤动负荷关系的研究进展[J]. 中国循证心血管医学杂志,2019,11(10):1274-1276. [87] Linz D, Mahfoud F, Schotten U, et al. Renal sympathetic denervation provides ventricular rate control but does not prevent atrial electrical remodeling during atrial fibrillation[J]. Hypertension, 2013, 61(1): 225-231. [88] Pinna GD, Maestri R, La Rovere MT. Assessment of baroreflex sensitivity from spontaneous oscillations of blood pressure and heart rate: proven clinical value?[J]. Physiological Measurement, 2015, 36(4): 741-753. [89] Kornej J, Hindricks G, Shoemaker MB, et al. The apple score: a novel and simple score for the prediction of rhythm outcomes after catheter ablation of atrial fibrillation[J]. Clinical Research in Cardiology, 2015, 104(10): 871-876. [90] Ladavich S, Ghoraani B. Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity[J]. Biomedical Signal Processing and Control, 2015, 18: 274-281. [91] Salvo P, Raedt R, Carrette E, et al. A 3D printed dry electrode for ECG/EEG recording[J]. Sensors and Actuators A: Physical, 2012, 174: 96-102. [92] Xing Y, Li J, Hu Z, et al. A portable neuECG monitoring system for cardiac sympathetic nerve activity assessment[C]//2020 International Conference on Sensing, Measurement & Data Analytics in the Era of Artificial Intelligence (ICSMD). Xi′an: IEEE, 2020: 407-412.