纳米药物递送在脑缺血再灌注损伤中对炎症反应和氧化应激的治疗及其进展
肖新芋1 , 高禹2 , 蒋宁2 , 彭奇龄1*
1 (重庆医科大学基础医学院,重庆 400016)2 (重庆医科大学病理科,重庆 400016)
Advances and Perspectives of Nano-Drug Delivery Systems Targeting Inflammation and Oxidative Stress during Cerebral Ischemia-Reperfusion Injury
Xiao Xinyu1 , Gao Yu2 , Jiang Ning2 , Peng Qiling1*
1 (School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China)2 (Department of Pathology, Chongqing Medical University, Chongqing 400016, China)
摘要 脑卒中是世界范围内致死率排第二位的疾病,其中80 %为缺血性脑卒中。再灌注损伤是影响脑缺血预后的关键,包括炎症反应和氧化应激等。近年来,功能化纳米药物递送体系因其良好的生物相容性、高效性、强特异性等优势在脑缺血疾病研究中被广泛应用。综述金属纳米递药体系、生物相容纳米递药体系以及高分子纳米递药体系在脑缺血再灌注损伤中抑制炎症反应以及清除氧化应激的研究,并对纳米药物递送体系今后的发展前景进行展望。
关键词 :
纳米药物递送 ,
脑缺血再灌注损伤 ,
炎症反应 ,
氧化应激 ,
高分子纳米颗粒
Abstract :Stroke is the second leading cause of death worldwide, 80 % of which is ischemic stroke. Reperfusion injury including inflammation, oxidative stress etc. is the key to prognosis of cerebral ischemia. Recently, functionalized nano-drug delivery systems,are widely applied in the cerebral ischemia for their characteristics of biocompatibility, tractability, and strong specificity. This paper reviews the research progresses on metal nano-delivery systems, biocompatible nano-delivery systems, and polymer nano-delivery systems that inhibit inflammatory responses and eliminate oxidative stress in the ischemia/reperfusion injury. The future development prospects of nano drug-delivery systems are proposed as well.
Key words :
nanomedicine delivery
cerebral ischemia-reperfusion injury
inflammation
oxidative stress
polymeric nanoparticle
收稿日期: 2021-10-26
基金资助: 重庆市自然科学基金(cstc2020jcyj-msxm0218);重庆市教委科技项目(KJQN202000401)
通讯作者:
* E-mail: pqlpzy@cqmu.edu.cn
引用本文:
肖新芋, 高禹, 蒋宁, 彭奇龄. 纳米药物递送在脑缺血再灌注损伤中对炎症反应和氧化应激的治疗及其进展[J]. 中国生物医学工程学报, 2023, 42(2): 235-241.
Xiao Xinyu, Gao Yu, Jiang Ning, Peng Qiling. Advances and Perspectives of Nano-Drug Delivery Systems Targeting Inflammation and Oxidative Stress during Cerebral Ischemia-Reperfusion Injury. Chinese Journal of Biomedical Engineering, 2023, 42(2): 235-241.
链接本文:
http://cjbme.csbme.org/CN/10.3969/j.issn.0258-8021.2023.02.012 或 http://cjbme.csbme.org/CN/Y2023/V42/I2/235
[1] Iadecola C,Buckwalter MS,Anrather J. Immune responses to stroke: mechanisms, modulation, and therapeutic potential[J]. J Clin Invest, 2020, 130(6): 2777-2788. [2] Wen Meiling,Jin Ya,Zhang Hao,et al. Proteomic analysis of rat cerebral cortex in the subacute to long-term phases of focal cerebral ischemia-reperfusion injury[J]. J Proteome Res, 2019, 18(8): 3099-3118. [3] Wang Wenzhi,Jiang Bin,Sun Haixin,et al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 adults[J]. Circulation, 2017, 135(8): 759-771. [4] Wu Simiao,Wu Bo,Liu Ming,et al. Stroke in China: advances and challenges in epidemiology, prevention, and management[J]. Lancet Neurol, 2019, 18(4): 394-405. [5] Shi Kaibin,Zou Ming,Jia Dongmei,et al. tPA Mobilizes immune cells that exacerbate hemorrhagic transformation in stroke[J]. Circ Res, 2021, 128(1): 62-75. [6] Eltzschig HK,Eckle T. Ischemia and reperfusion——from mechanism to translation[J]. Nat Med, 2011, 17(11): 1391-1401. [7] Akbik F,Xu Haolin,Xian Ying,et al. Trends in reperfusion therapy for in-hospital ischemic stroke in the endovascular therapy era[J]. JAMA Neurol, 2020, 77(12): 1486-1495. [8] Khatri R,McKinney AM,Swenson B,et al. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke[J]. Neurology, 2012, 79(13 Suppl 1): S52-S57. [9] Zang Xinlong,Zhou Jingyi,Zhang Xiaoxu,et al. Ischemia reperfusion injury: opportunities for nanoparticles[J]. ACS Biomater Sci Eng, 2020, 6(12): 6528-6539. [10] Suzuki Y,Nagai N,Umemura K. A review of the mechanisms of blood-brain barrier permeability by tissue-type plasminogen activator treatment for cerebral ischemia[J]. Front Cell Neurosci, 2016, 10:2. [11] Lambertsen KL,Finsen B,Clausen BH. Post-stroke inflammation-target or tool for therapy?[J]. Acta Neuropathol, 2019, 137(5): 693-714. [12] Shi Kaibin,Tian Decai,Li Zhiguo,et al. Global brain inflammation in stroke[J]. Lancet Neurol, 2019, 18(11): 1058-1066. [13] Imai F,Suzuki H,Oda J,et al. Neuroprotective effect of exogenous microglia in global brain ischemia[J]. J Cereb Blood Flow Metab, 2007, 27(3): 488-500. [14] Kronenberg G,Uhlemann R,Richter N,et al. Distinguishing features of microglia-and monocyte-derived macrophages after stroke[J]. Acta Neuropathol, 2018, 135(4): 551-568. [15] Zhou Zhenhua,Lu Jianfei,Liu Wenwu,et al. Advances in stroke pharmacology[J]. Pharmacol Ther, 2018, 191:23-42. [16] Shenoda B. The role of Na+/Ca2+ exchanger subtypes in neuronal ischemic injury[J]. Transl Stroke Res, 2015, 6(3): 181-190. [17] Granzotto A,Sensi SL. Intracellular zinc is a critical intermediate in the excitotoxic cascade[J]. Neurobiol Dis, 2015, 81:25-37. [18] Cervantes M,Moralí G,Letechipía-Vallejo G. Melatonin and ischemia-reperfusion injury of the brain[J]. J Pineal Res, 2008, 45(1): 1-7. [19] Ma Feihe,Yang Liu,Sun Zhourui,et al. Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection[J]. Sci Adv, 2020, 6(30): eabb4429. [20] Pellegrini L,Albecka A,Mallery DL,et al. SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids[J]. Cell Stem Cell, 2020, 27(6): 951-961. [21] Furtado D,Björnmalm M,Ayton S,et al. Overcoming the blood-brain barrier: the role of nanomaterials in treating neurological diseases[J]. Adv Mater, 2018, 30(46): e1801362. [22] Mitchell MJ,Billingsley MM,Haley RM,et al. Engineering precision nanoparticles for drug delivery[J]. Nat Rev Drug Discov, 2021, 20(2): 101-124. [23] Xiao Lan,Wei Fei,Zhou Yinghong,et al. Dihydrolipoic acid-gold nanoclusters regulate microglial polarization and have the potential to alter neurogenesis[J]. Nano Lett, 2020, 20(1): 478-495. [24] Bao Qunqun,Hu Ping,Xu Yingying,et al. Simultaneous blood-brain barrier prossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles[J]. ACS Nano, 2018, 12(7): 6794-6805. [25] Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters[J]. Cerebrovasc Dis, 2003, 15(3): 222-229. [26] He Lizhen,Huang Guanning,Liu Hongxing,et al. Highly bioactive zeolitic imidazolate framework-8-capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke[J]. Sci Adv, 2020, 6(12): eaay9751. [27] Van de Walle A,Kolosnjaj-Tabi J,Lalatonne Y,et al. Ever-evolving identity of magnetic nanoparticles within human cells: the interplay of endosomal confinement, degradation, storage, and neocrystallization[J]. Acc Chem Res, 2020, 53(10): 2212-2224. [28] Wang Huaiji,Liu Ying,He Ruiqing,et al. Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery[J]. Biomater Sci, 2020, 8(2): 552-568. [29] Dong Xinyue,Gao Jin,Zhang Caoyang,et al. Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke[J]. ACS Nano, 2019, 13(2): 1272-1283. [30] Feng Lishuai,Dou Chaoran,Xia Yuguo,et al. Neutrophil-like cell-membrane-coated nanozyme therapy for ischemic brain damage and long-term neurological functional recovery[J]. ACS Nano, 2021, 15(2): 2263-2280. [31] Shi Jinjin,Yu Wenyan,Xu Lihua,et al. Bioinspired nanosponge for salvaging ischemic stroke via free radical scavenging and self-adapted oxygen regulating[J]. Nano Lett, 2020, 20(1): 780-789. [32] He Wenxiu,Mei Qiyong,Li Jie,et al. Preferential targeting cerebral ischemic lesions with cancer cell-Inspired nanovehicle for ischemic stroke treatment[J]. Nano Lett, 2021, 21(7): 3033-3043. [33] Masserini M. Nanoparticles for brain drug delivery[J]. ISRN Biochem, 2013, 2013: 238428. [34] Suk JS,Xu Qingguo,Kim N,et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery[J]. Adv Drug Deliv Rev, 2016, 99(Pt A): 28-51. [35] Liu Xin,Ye Ming,An Chiying,et al. The effect of cationic albumin-conjugated PEGylated tanshinone IIA nanoparticles on neuronal signal pathways and neuroprotection in cerebral ischemia[J]. Biomaterials, 2013, 34(28): 6893-6905. [36] Wang Ye,Luo Jun,Li Shiyong. Nano-curcumin simultaneously protects the blood-brain barrier and reduces M1 microglial activation during cerebral ischemia-reperfusion injury[J]. ACS Appl Mater Interfaces, 2019, 11(4): 3763-3770. [37] Guo Xing,Deng Gang,Liu Jun,et al. Thrombin-responsive, brain-targeting nanoparticles for improved stroke therapy[J]. ACS Nano, 2018, 12(8): 8723-8732. [38] Jin Lulu,Zhu Zhixin,Hong Liangjie,et al. ROS-responsive 18β-glycyrrhetic acid-conjugated polymeric nanoparticles mediate neuroprotection in ischemic stroke through HMGB1 inhibition and microglia polarization regulation[J]. Bioact Mater, 2023, 19:38-49. [39] Mei T,Kim A,Vong LB,et al. Encapsulation of tissue plasminogen activator in pH-sensitive self-assembled antioxidant nanoparticles for ischemic stroke treatment-synergistic effect of thrombolysis and antioxidant[J]. Biomaterials, 2019, 215:119209. [40] Ganbold T,Bao Q,Zandan J,et al. Modulation of microglia polarization through silencing of NF-κB p65 by functionalized curdlan nanoparticle-mediated RNAi[J]. ACS Appl Mater Interfaces, 2020, 12(10): 11363-11374. [41] Yuan Jichao,Li Lanlan,Yang Qinghua,et al. Targeted treatment of ischemic stroke by bioactive nanoparticle-derived reactive oxygen species responsive and inflammation-resolving nanotherapies[J]. ACS Nano, 2021, 15(10): 16076-16094. [42] Wu Haoan,Peng Bin,Mohammed FS,et al. Brain targeting, antioxidant polymeric nanoparticles for stroke drug delivery and therapy[J]. Small, 2022, 18(22): e2107126. [43] Tian Xing,Fan Taojian,Zhao Wentian,et al. Recent advances in the development of nanomedicines for the treatment of ischemic stroke[J]. Bioact Mater, 2021, 6(9): 2854-2869. [44] Alkaff SA,Radhakrishnan K,Nedumaran AM,et al. Nanocarriers for stroke therapy: advances and obstacles in translating animal studies[J]. Int J Nanomedicine, 2020, 15:445-464.