Research Progress of Magnetoencephalography in the Functional Mechanism of Bilingual Brain
Ma Hengfen1, Wu Yuntao1, Zhao Wen1, Jia Liping2*, Zhou Dandan1*
1(School of Foreign Languages, Civil Aviation University of China, Tianjin 300300, China) 2(Department of Psychology, Weifang Medical University, Weifang 261053, Shandong, China)
Abstract:It has been proved that bilingual individuals’ regular use of two languages has a broad impact on the linguistic and cognitive functions. However, the impact mechanism of bilingual experience on the brain remains unclear. Magnetoencephalography (MEG) is a noninvasive method to measure the weak brain magnetic field signal, which can more accurately reflect the brain neural activity, therefore is of great significance for the early diagnosis of brain diseases and the frontier research of brain science. This paper reviewed MEG’s application in the study of bilingual brain function mechanism by introducing the development process, analysis methods and software of MEG, mainly including the advantages of bilingualism in brain development, the brain mechanism of switching between two languages, bilingualism and mathematical calculation. At last, a new wearable brain magnetic technology, together with its potential application in the study of bilingual brain function mechanism is introduced.
马恒芬, 吴云涛, 赵文, 贾丽萍, 周丹丹. 双语脑功能机制的脑磁图研究进展[J]. 中国生物医学工程学报, 2021, 40(4): 477-484.
Ma Hengfen, Wu Yuntao, Zhao Wen, Jia Liping, Zhou Dandan. Research Progress of Magnetoencephalography in the Functional Mechanism of Bilingual Brain. Chinese Journal of Biomedical Engineering, 2021, 40(4): 477-484.
[1] Emmorey K. Language: Do bilinguals think differently in each language? [J]. Curr Biol, 2019, 29(21): 1133-1135. [2] Friederici AD, Chomsky N, Berwick RC, et al. Language, mind and brain [J]. Nat Hum Behav, 2017, 1(10): 713-722. [3] Hari R, Baillet S, Barnes G, et al. IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG) [J]. Clin Neurophysiol, 2018, 129(8): 1720-1747. [4] Frye RE, Rezaie R, Papanicolaou AC. Functional neuroimaging of language using magnetoencephalography [J]. Phys Life Rev, 2009, 6(1): 1-10. [5] Dikker S, Assaneo MF, Gwilliams L, et al. Magnetoencephalography and Language [J]. Neuroimaging Clin N Am, 2020, 30(2): 229-238. [6] Gross J. Magnetoencephalography in cognitive neuroscience: A Primer [J]. Neuron, 2019, 104(2): 189-204. [7] Cohen D. Magnetoencephalography: Evidence of Magnetic Fields Produced by Alpha-Rhythm Currents [J]. Science, 1968, 161(3843):784-786. [8] 程光,章翔. 脑磁图的发展及应用研究 [J]. 中华神经外科疾病研究杂志, 2002, 1(3): 277-279. [9] Kim JA, Davis KD. Magnetoencephalography: physics, techniques, and applications in the basic and clinical neurosciences [J]. J Neurophysiol, 2021, 125(3): 938-956. [10] 王晓飞, 孙献平, 赵修超, 等. 超灵敏原子磁力计在生物磁应用中的研究进展[J]. 中国激光, 2018, 45(2): 0207012. [11] Allred JC, Lyman RN, Kornack TW, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation [J]. Phys Rev Lett, 2002, 89(13): 130801-130804. [12] Xia H, Baranga BA, Hoffman D, et al. Magnetoencephalography with an atomic magnetometer [J]. Applied Physics Letters, 2006, 89(21): 664-666. [13] Colombo AP, Carter TR, Borna A, et al. Four-channel optically pumped atomic magnetometer for magnetoencephalography [J]. Opt Express, 2016, 24(14): 15403-15416. [14] Boto E, Holmes N, Leggett J, et al. Moving magnetoencephalography towards real-world applications with a wearable system [J]. Nature, 2018, 555(7698): 657-661. [15] Tierney TM, Holmes N, Mellor S, et al. Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography [J]. Neuroimage, 2019, 199: 598-608. [16] Hari R, Salmelin R. Magnetoencephalography: From SQUIDs to neuroscience [J]. Neuroimage, 2012, 61(2): 386-396. [17] Tenney JR, Fujiwara H, Rose DF. The value of source localization for clinical magnetoencephalography: Beyond the equivalent current dipole [J]. J Clin Neurophysiol, 2020, 37(6): 537-544. [18] Herdman AT, Wollbrink A, Chau W, et al. Determination of activation areas in the human auditory cortex by means of synthetic aperture magnetometry [J]. Neuroimage, 2003, 20(2): 995-1005. [19] Lamus C, Hämäläinen MS, Temereanca S, et al. A spatiotemporal dynamic distributed solution to the MEG inverse problem [J]. Neuroimage, 2012, 63(2):894-909. [20] Tian S, Huang JZ, Shen H. Solving the MEG inverse problem: A robust two-way regularization method [J]. Technometrics, 2015, 57(1): 123-137. [21] Fukushima M, Yamashita O, Kanemura A, et al. A state-space modeling approach for localization of focal current sources from MEG [J]. IEEE Trans Biomed Eng, 2012, 59(6):1561-1571. [22] Hoechstetter K, Bornfleth H, Weckesser D, et al. BESA source coherence: a new method to study cortical oscillatory coupling [J]. Brain Topogr, 2004, 16(4): 233-238. [23] Tadel F, Baillet S, Mosher JC, et al. Brainstorm: a user-friendly application for MEG/EEG analysis [J]. Comput Intell Neurosci, 2011, 2011: 879716. [24] Oostenveld R, Fries P, Maris E, et al. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data [J]. Comput Intell Neurosci, 2011, 2011: 156869 [25] Friston KJ, Holmes AP, Worsley KJ, et al. Statistical Parametric Maps in functional imaging: A general linear approach [J]. Hum Brain Mapp, 1995, 2: 189-210. [26] Gramfort A, Papadopoulo T, Olivi E, et al. OpenMEEG: opensource software for quasistatic bioelectromagnetics [J]. Biomed Eng Online, 2010, 9: 45-64. [27] Hinkley LBN, Dale CL, Cai Chang, et al. NUTMEG: Open Source Software for M/EEG Source Reconstruction [J]. Front Neurosci, 2020, 14: 710-716. [28] Marian V, Spivey M. Bilingual and monolingual processing of competing lexical items [J]. Applied Psycholinguistics, 2003, 24: 173-193. [29] van Heuven WJB, Dijkstra T. Language comprehension in the bilingual brain: fMRI and ERP support for psycholinguistic models [J]. Brain Research Reviews, 2010, 64(1): 104-122. [30] Schmid E, Thomschewski A, Taylor A, et al. Diagnostic accuracy of functional magnetic resonance imaging, Wada test, magnetoencephalography, and functional transcranial Doppler sonography for memory and language outcome after epilepsy surgery: A systematic review [J]. Epilepsia, 2018, 59(12): 2305-2317. [31] Shaffer DR, Kipp K. Developmental Psychology: Childhood and Adolescence [M]. 8th ed. Belmont: Wadsworth, Cengage Learning, 2009: 249-428. [32] Costa A, Sebastián-Gallés N. How does the bilingual experience sculpt the brain? [J]. Nat Rev Neurosci, 2014, 15(5): 336-345. [33] Ramírez NF, Ramírez RR, Clark M, et al. Speech discrimination in 11-month-old bilingual and monolingual infants: A magnetoencephalography study [J]. Dev Sci, 2017, 20(1): 10: 1111-1116. [34] Bialystok E, Craik FI, Grady C, et al. Effect of bilingualism on cognitive control in the Simon task: evidence from MEG [J]. NeuroImage, 2005, 24(1): 40-49. [35] Blanco-Elorrieta E, Pylkkänen L. Bilingual language control in perception versus action: MEG reveals comprehension control mechanisms in anterior cingulate cortex and domain-general control of production in dorsolateral prefrontal cortex [J]. The Journal of Neuroscience, 2016, 36(2): 290-301. [36] Calabria M, Costa A, Green DW, et al. Neural basis of bilingual language control [J]. Ann N Y Acad Sci, 2018, 10: 1111-1116. [37] Pellikka J, Helenius P, Mäkelä JP, et al. Context affects L1 but not L2 during bilingual word recognition: an MEG study [J]. Brain Lang, 2015, 142: 8-17. [38] Zhu JD, Seymour RA, Szakay A, et al. Neuro-dynamics of executive control in bilingual language switching: An MEG study [J]. Cognition, 2020, 199: 104247-104258. [39] Blanco-Elorrieta E, Emmorey K, Pylkkänen L. Language switching decomposed through MEG and evidence from bimodal bilinguals [J]. Proc Natl Acad Sci USA, 2018, 115(39): 9708-9713. [40] Hut SCA, Helenius P, Leminen A, et al. Language control mechanisms differ for native languages: Neuromagnetic evidence from trilingual language switching [J]. Neuropsychologia, 2017, 107: 108-120. [41] Leonard MK, Torres C, Travis KE, et al. Language proficiency modulates the recruitment of non-classical language areas in bilinguals [J]. PLoS ONE, 2011, 6(3): e18240-e18250. [42] Leonard MK, Brown TT, Travis KE, et al. Spatiotemporal dynamics of bilingual word processing [J]. NeuroImage, 2010, 49(4): 3286-3294. [43] Wang Yingying, Xiang Jing, Vannest J, et al. Neuromagnetic measures of word processing in bilinguals and monolinguals [J]. Clinical Neurophysiology, 2011, 122(9): 1706-1717. [44] Pang EW, MacDonald MJ. An MEG study of the spatiotemporal dynamics of bilingual verb generation [J]. Brain Research, 2012, 1467: 56-66. [45] Blanco-Elorrieta E, Pylkkänen L. Bilingual language switching in the laboratory versus in the wild: The spatiotemporal dynamics of adaptive language control [J]. The Journal of Neuroscience, 2017, 37: 9022-9036. [46] Lin JL, Imada T, Kuhl PK. Neuroplasticity, bilingualism, and mental mathematics: A behavior-MEG study [J]. Brain Cogn, 2019, 134: 122-134. [47] Holmes N, Leggett J, Boto E, et al. A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography [J]. Neuroimage, 2018,181:760-774. [48] Hill RM, Boto E, Holmes N, et al. A tool for functional brain imaging with lifespan compliance [J]. Nat Commun, 2019,10:4785. [49] Boto E, Hill RM, Rea M, et al. Measuring functional connectivity with wearable MEG [J]. Neuroimage, 2021, 230:117815. [50] Zhang X, Chen CQ, Zhang MK, et al. Detection and analysis of MEG signals in occipital region with double-channel OPM sensors [J]. J Neurosci Methods, 2020,346:108948. [51] Zhang R, Xiao W, Ding Y, et al. Recording brain activities in unshielded Earth's field with optically pumped atomic magnetometers [J]. Sci Adv, 2020,6(24):eaba8792. [52] Tierney TM, Holmes N, Meyer SS, et al. Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function [J]. Neuroimage, 2018,181:513-520. [53] de Lange P, Boto E, Holmes N, et al. Measuring the cortical tracking of speech with optically-pumped magnetometers [J]. Neuroimage, 2021,233:117969. [54] Dash D, Wisler A, Ferrari P, et al. MEG sensor selection for neural speech decoding [J]. IEEE Access, 2020;8:182320-182337. [55] Yoo PE, John SE, Farquharson S, et al. 7T-fMRI: Faster temporal resolution yields optimal BOLD sensitivity for functional network imaging specifically at high spatial resolution [J]. Neuroimage, 2018, 164:214-229.