Classification of X-Ray Phase-Contrast CT Images in Liver Cancer Based on Machine Learning
Wang Kun1,2, Zhang Xueliang3, Zhang Suixia2,3, Ji Xuewen2,4, Liu Huiqiang3*
1(School of Public Health,Xinjiang Medical University,Urumqi 830011,China) 2(State Key Laboratory of Causes and Prevention of High Incidence in Central Asia,The First Affiliated Hospital of Xinjiang Medical University,Urumqi 830054,China) 3(School of Medical Engineering and Technology,Xinjiang Medical University,Urumqi 830011,China) 4(The First Affiliated Hospital of Xinjiang Medical University,Urumqi 830054,China)
王坤, 张学良, 张岁霞, 季学闻, 刘慧强. 基于机器学习方法的肝癌X射线相衬CT图像分类研究[J]. 中国生物医学工程学报, 2020, 39(5): 621-625.
Wang Kun, Zhang Xueliang, Zhang Suixia, Ji Xuewen, Liu Huiqiang. Classification of X-Ray Phase-Contrast CT Images in Liver Cancer Based on Machine Learning. Chinese Journal of Biomedical Engineering, 2020, 39(5): 621-625.
[1] Ferlay J,Colombet M,Soerjomataram I,et al.Estimating the global cancer incidence and mortality in 2018:GLOBOCAN sources and methods[J].International Journal of Cancer,2019,144(8):1941-1953. [2] Freddie B,Jacques F,Isabelle S,et al.Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA:A Cancer Journal for Clinicians,2018,68(6):394-424. [3] Kondo S,Takagi K,Nishida M,et al.Computer-aided diagnosis of focal liver lesions using contrast- enhanced ultrasonography with perflubutane microbubbles[J].IEEE Trans Med Imaging,2017,36(7):1427-1437. [4] 刘建华,王建伟.基于图像处理的CT图像肝癌诊断技术研究[J].清华大学学报(自然科学版),2014,54(7):917-923. [5] 陈茂东,张静,杨桂香,等.基于普美显增强磁共振的影像组学鉴别肝细胞癌与肝血管瘤[J].南方医科大学学报,2018,38(4):428-433. [6] Manabe O,Ohira H,Hirata K,et al.Use of 18F-FDG PET/CT texture analysis to diagnose cardiac sarcoidosis[J].Eur J Nucl Med Mol Imaging,2019,46(6):1240-1247. [7] 李烨,盛伟华,阮娇妮,等.基于T2WI灰度共生矩阵在鉴别高低级别胶质瘤中的应用[J].中国医学计算机成像杂志,2018,24(5):430-433. [8] 高岩.基于CT图像的肾脏肿瘤纹理特征提取[J].中国数字医学,2019,14(4):66-68. [9] 马本学,高国刚,王宝,等.基于双树复小波变换和邻域操作的哈密瓜纹理提取[J].农业机械学报,2014,45(12):316-322. [10] Li Y,Zhang T.Deep neural mapping support vector machines[J].Neural Networks,2017,93:185-194. [11] Cheng Yuhu,Qiao Xue,Wang Xuesong,et al.Random forest classifier for zero-shot learning based on relative attribute[J].IEEE Trans Neural Netw Learn Syst,2018,29(5):1662-1674. [12] Uzun H,YHldZz Z,Goldfarb JL,et al.Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis[J].Bioresource Technology,2017,234(Complete):122-130.