网站首页            期刊简介             编委会             投稿指南             期刊订阅             下载中心             在线留言            联系我们             English
  2025年4月5日 星期六  
文章快速检索
中国生物医学工程学报  2020, Vol. 39 Issue (3): 311-317    DOI: 10.3969/j.issn.0258-8021.2020.03.08
  论著 本期目录 | 过刊浏览 | 高级检索 |
基于多尺度排序递归图的糖尿病轻度认知障碍脑电信号分析
顾广华1, 娄春阳1, 崔冬1*, 侯俊博1, 李朝辉1, 李小俚2, 尹世敏3, 王磊3
1 燕山大学信息科学与工程学院 河北省信息传输与信号处理重点实验室, 河北 秦皇岛 066004;
2 北京师范大学认知神经科学和学习国家重点实验室, 北京 100875;
3 中国人民解放军火箭军特色医疗中心神经内科, 北京 100088
Multi-Scale Recurrence Plot Based EEG Signal Analysis of Diabetes Mellitus and Mild Cognitive Impairment
Gu Guanghua1, Lou Chunyang1, Cui Dong1*, Hou Junbo1, Li Zhaohui1, Li Xiaoli2, Yin Shimin3, Wang Lei3
1 Hebei Key Laboratory of Information Transmission and Signal Processing, School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China;
2 State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China;
3 Department of Neurology, The Rocket Force Special Medical Center, Beijing 100088, China
全文: PDF (1120 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 研究糖尿病轻度认知障碍(MCI)脑电信号多尺度的确定性特性, 有利于其早期预防和诊断。基于多尺度下的排序递归图, 对15通道闭眼静息态的脑电信号进行多尺度排序递归图确定性分析。4组被试分别为14例糖尿病轻度认知障碍(DM-MCI)、11例糖尿病认知功能正常(DM-nMCI)的患者以及16例无糖尿病轻度认知障碍(nDM-MCI)、10例无糖尿病认知功能正常(nDM-nMCI)的患者。利用单因素方差分析(one-way ANOVA)对4组被试脑电信号的多尺度确定性值进行统计分析, 利用皮尔森相关方法研究多尺度确定性与认知功能之间的相关性。结果显示, 小尺度1≤s≤4时, nDM-MCI组和nDM-nMCI组确定性DET值明显高于DM-MCI组和DM-nMCI组的DET值;大尺度12≤s≤15时, 4组DET值差异性小, 且DM-MCI组所有电极不同尺度下的确定性值均要高于DM-nMCI;轻度认知障碍患者在C3(DM-MCI: 0.83±0.09, nDM-MCI: 0.86±0.09)和C4 (DM-MCI: 0.85±0.08, nDM-MCI: 0.88±0.08, )电极的小尺度下确定性值显著增高, 是认知障碍的主要特征, 且与Boston (P=0.033), FAQ(P=0.026), WAIS (P=0.037), MoCA (P=0.039, P=0.017)等多项认知功能显著相关;糖尿病患者在Fp1(DM-MCI: 0.80±0.09, DM-nMCI: 0.75±0.07)、Fp2(DM-MCI: 0.80±0.09, DM-nMCI: 0.75±0.01)和Oz(DM-MCI: 0.76±0.06, DM-nMCI: 0.73±0.07)小尺度确定性和Fp2(DM-MCI: 0.96±0.03, DM-nMCI: 0.94±0.01)大尺度确定性显著降低, 是糖尿病的重要特征。基于多尺度排序递归图的确定性可用于分析与认知功能下降和糖尿病相关的脑电特征。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
顾广华
娄春阳
崔冬
侯俊博
李朝辉
李小俚
尹世敏
王磊
关键词 轻度认知障碍多尺度确定性排序递归图    
Abstract:Studying the EEG characteristics in mild cognitive impairment (MCI) of diabetes is helpful to the early prevention and diagnosis of the disease. Based on the multi-scale recurrence plot. We analyzed the deterministic characteristics of 15-electrode eye-closed resting state EEG of 14 patients with mild diabetes mellitus MCI(DM-MCI) and 11 patients with normal cognitive function of diabetes mellitus(DM-nMCI), and 16 patients with mild cognitive impairment without diabetes mellitus(nDM-MCI) and 10 patients with normal cognitive function without diabetes mellitus (nDM-nMCI). Deterministic values between the four groups were statistically analyzed using one-way ANOVA, and the correlations between deterministic values and cognitive function of each electrode were calculated by Pearson correlation method. The results showed that at small scale1≤s≤4, the values of DET in patients with nDM-MCI and nDM-nMCI were significantly higher than those with DM-MCI and DM-nMCI; At large scale12≤s≤15, four groups of DET values tend to be consistent. The deterministic values of all electrodes at different scales in the DM-MCI group were higher DM-nMCI group. The deterministic values of MCI at C3 (DM-MCI: 0.83±0.09, nDM-MCI: 0.86±0.09) and C4(DM-MCI: 0.85±0.08, nDM-MCI: 0.88±0.08) electrodes increased significantly at different scales, which were important characteristics in distinguishing MCI and their correlations between DET and neuropsychological test scores Boston (P=0.033), FAQ (P=0.026), WAIS (P=0.037), and MoCA (P=0.039, P=0.017) was significant. The DET values of Fp1 (DM-MCI: 0.80±0.09, DM-nMCI: 0.75±0.07), Fp2(DM-MCI: 0.80±0.09, DM-nMCI: 0.75±0.01) and Oz (DM-MCI: 0.76±0.06, DM-nMCI: 0.73±0.07) at small scale, and Fp2 (DM-MCI: 0.96±0.03, DM-nMCI: 0.94±0.01) at big scale increased significantly, which are the important characteristics in distinguishing DM. It was suggested that the determinacy based on multi-scale order recurrence plot was the EEG feature associated with cognitive decline and DM.
Key wordsmild cognitive impairment (MCI)    multi-scale    determination    order recurrence plot
收稿日期: 2018-07-12     
PACS:  R318  
基金资助:国家自然科学基金(61603327);河北省自然科学基金(F2018203239);河北省高等学校科学技术研究重点项目(ZD2017080)
通讯作者: *, E-mail: cuidong@ysu.edu.cn   
引用本文:   
顾广华, 娄春阳, 崔冬, 侯俊博, 李朝辉, 李小俚, 尹世敏, 王磊. 基于多尺度排序递归图的糖尿病轻度认知障碍脑电信号分析[J]. 中国生物医学工程学报, 2020, 39(3): 311-317.
Gu Guanghua, Lou Chunyang, Cui Dong, Hou Junbo, Li Zhaohui, Li Xiaoli, Yin Shimin, Wang Lei. Multi-Scale Recurrence Plot Based EEG Signal Analysis of Diabetes Mellitus and Mild Cognitive Impairment. Chinese Journal of Biomedical Engineering, 2020, 39(3): 311-317.
链接本文:  
http://cjbme.csbme.org/CN/10.3969/j.issn.0258-8021.2020.03.08     或     http://cjbme.csbme.org/CN/Y2020/V39/I3/311
版权所有 © 2015 《中国生物医学工程学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发