Abstract:Aiming to resolve the problems of initial clustering selection randomness and noise sensitivity of fuzzy C means algorithm, this paper proposed an image segmentation algorithm based on the improved spatial fuzzy clustering to segment the DTI image of human brain. In this paper, we used the local density kernel function and the center distance function to select the initial clustering center accurately, which not only solved the problem of clustering effect instability caused by random selection of cluster center, but also made the objective function converge quickly, and improved the segmentation efficiency. Moreover, the proposed algorithm reduced the influence on the segmentation result caused by image noise and human factors by integrating normal distribution spatial information into fuzzy membership function. We segmented DTI data of human brain with the proposed method, FCM and SFCM to evaluate the clustering effect of the algorithm. In the experiments, following data were employed, including segmented 58 cases of DTI data provided by the University of Minnesota Biomedical Functional Imaging and Nerve Engineering Laboratory, 3 cases of FA parameter images, and 6 cases of iterative noisy human brain DTI images. Results show that the segmentation coefficient of proposed algorithm reached 0.9841. In the same image, the algorithm obtained the most improvement of 20.2% than FCM on the partition coefficient, and the most decline of 19.8% than SFCM on the partition entropy; The average number of iterations of the algorithm was 32, which is significantly lower than 52 of FCM and 76 of SFCM. Therefore, the algorithm can segment the important target accurately and quickly, and the segmentation results are insensitive to image noise.
刘絮雨, 张相芬, 马燕, 李传江, 杨燕勤. 基于改进空间模糊聚类的DTI图像分割算法[J]. 中国生物医学工程学报, 2018, 37(4): 394-403.
Liu Xuyu, Zhang Xiangfen, Ma Yan, Li Chuanjiang, Yang Yanqin. DTI Image Segmentation Algorithm Based on the Improved Spatial Fuzzy Clustering. Chinese Journal of Biomedical Engineering, 2018, 37(4): 394-403.
[1] Hasan KM, Moeller FG, Narayana PA. DTI-based segmentation and quantification of human brain lateral ventricular CSF volumetry and mean diffusivity: validation, age, gender effects and biophysical implications [J]. Magnetic Resonance Imaging, 2014, 32(5):405-412. [2] Xiong Kunlin, Zhu Yongshan, Zhang Weiguo. Diffusion tensor imaging and magnetic resonance spectroscopy in traumatic brain injury: a review of recent literature [J]. Brain Imaging & Behavior, 2014, 8(4):487-496. [3] Lenglet C, Rousson M, Deriche R. DTI segmentation by statistical surface evolution [J]. IEEE Transactions on Medical Imaging, 2006, 25(6):685-700. [4] Tang Lihua, Wen Ying, Zhou Zhenyu, et al. Reduced field-of-view DTI segmentation of cervical spine tissue [J]. Magnetic Resonance Imaging, 2013, 31(9):1507-1514. [5] Barbieri S, Bauer MH, Klein J, et al. DTI segmentation via the combined analysis of connectivity maps and tensor distances [J]. Neuroimage, 2012, 60(2):1025-1035. [6] 吴占雄, 朱善安, 贺斌. 扩散张量成像中脑胼胝体结构图像的分割算法 [J]. 浙江大学学报(工学版), 2011, 45(1):163-167. [7] 张承杰, 厉力华. 基于空间FCM与MRF方法的乳腺MRI序列三维病灶分割研究 [J]. 中国生物医学工程学报, 2014, 33(2):202-211. [8] 林相波, 王新宁, 郭冬梅. 一种分割脑磁共振图像的改进FCM聚类算法 [J]. 中国生物医学工程学报, 2016, 35(6):648-657. [9] Wang Jianzhong, Kong Jun, Lu Yinghua, et al. A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints [J]. Computerized Medical Imaging & Graphics, 2009, 32(8):685-698. [10] Krinidis S, Chatzis V. A robust fuzzy local information C-means clustering algorithm [J]. IEEE Transactions on Image Processing, 2010, 19(5): 1328-1337. [11] Ji Zexuan, Xia Yong, Chen Qiang, et al.Fuzzy C-means clustering with weighted image patch for image segmentation [J]. Applied soft computing, 2012, 12(6): 1659-1667. [12] Vamvakas A, Tsougos I, Arikidis N, et al. Local curvature analysis for differentiating Glioblastoma multiforme from solitary metastasis [C]//Imaging Systems and Techniques (IST), 2016 IEEE International Conference on. IEEE, 2016: 177-182. [13] Chuang KS, Tzeng HL, Chen S, et al. Fuzzy c-means clustering with spatial information for image segmentation [J]. Computerized Medical Imaging & Graphics, 2006, 30(1):9-15. [14] He Lianghua, Wen Ying, Wan, Meng. Multi-channel features based automated segmentation of diffusion tensor imaging using an improved FCM with spatial constraints, Neurocomputing, 2014.01.01,137: 104-117. [15] Al-Ayyoub M, Abu-DaloA M, Jararweh Y, et al. A GPU-based implementations of the fuzzy C-means algorithms for medical image segmentation [J]. The Journal of Supercomputing, 2015, 71(8):3149-3162. [16] Kannan SR, Ramathilagam S, Devi R, et al. Robust kernel FCM in segmentation of breast medical images [J]. Expert Systems with Applications, 2011, 38(4):4382-4389. [17] Gong Maoguo, Su Linzhi, Jia Meng, et al. Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images [J]. IEEE Transactions on Fuzzy Systems, 2014, 22(1):98-109. [18] Hemanth DJ, Anitha J, Balas VE. Fast and accurate fuzzy C-means algorithm for MR brain image segmentation [J]. International Journal of Imaging Systems & Technology, 2016, 26(3):188-195. [19] Rodriguez A, Laio A. Machine learning. Clustering by fast search and find of density peaks [J]. Science, 2014, 344(6191):1492-1496. [20] Wang Shuliang, Wang Dakui, Li Caoyuan, et al. Clustering by Fast Search and Find of Density Peaks with Data Field [J]. Chinese Journal of Electronics, 2016, 344(3):397-402. [21] 盛华, 张桂珠. 一种融合K-means和快速密度峰值搜索算法的聚类方法 [J]. 计算机应用与软件, 2016, 33(10):260-264. [22] 林涛, 柳孝云, 张相芬,等. 基于新的形态学梯度参数的DTI图像分割算法 [J]. 电视技术, 2015, 39(6):5-7. [23] 吴占雄, 朱善安. 基于移动最小二乘法的白质纤维束走向跟踪 [J]. 浙江大学学报(工学版), 2011,45(3):458-461. [24] 韩凌波, 王强, 蒋正锋,等. 一种改进的K-means初始聚类中心选取算法[J]. 计算机工程与应用, 2010, 46(17):150-152. [25] Chang CT, Lai JZC, Jeng MD. A fuzzy K-means clustering algorithm using cluster center displacement[J]. Pattern Recognition, 2009, 42(11):2551-2556. [26] 孙权森, 纪则轩. 基于模糊聚类的脑磁共振图像分割算法综述[J]. 数据采集与处理, 2016, 31(1):28-42.