Abstract:Stroke is one of the main causes for motor dysfunction, which brings about great spiritual and economic burdens for the society and families. Motor rehabilitation therapies using transcranial electrical stimulation (TES) provide a promising treatment for patients to improve their motor functions and life qualities. TES is a painless, noninvasive brain stimulation method, which has showed the effects of regulating calcium concentration in neurons, enhancing synaptic plasticity, modulating neural firing frequency and changing cortical excitability, which in turn improved the neuronal function. This paper reviewed the application of TES to motor function recovery after stroke, including neural effects, selection of parameters, safety evaluation and achievements as well as present issues for further investigations in both scientific research and clinical tests.
基金资助:国家自然科学基金(81630051,91520205,81601565);中国生物医学工程学会会员(Member, Chinese Society of Biomedical Engineering)
通讯作者:
E-mail: xmp52637@tju.edu.cn
引用本文:
穆思雨, 许敏鹏, 何峰, 张力新,明东. 经颅电刺激在卒中后运动康复领域的研究进展[J]. 中国生物医学工程学报, 2018, 37(1): 106-111.
Mu Siyu, Xu Minpeng, He Feng ,Zhang Lixin,Ming Dong. Research Advancements of Transcranial Electrical Stimulation on Motor Function Recovery after Stroke. Chinese Journal of Biomedical Engineering, 2018, 37(1): 106-111.
[1] Ulam F, Shelton C, Richards L, et al. Cumulative effects of transcranial direct current stimulation on EEG oscillations and attention/working memory during subacute neurorehabilitation of traumatic brain injury[J]. Clinical Neurophysiology, 2015, 126(3): 486-496. [2] Coffman BA, Clark VP, Parasuraman R. Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation[J]. Neuroimage, 2014, 85: 895-908. [3] Liebetanz D, Klinker F, Hering D, et al. Anticonvulsant Effects of Transcranial Direct-current Stimulation (tDCS) in the Rat Cortical Ramp Model of Focal Epilepsy[J]. Epilepsia, 2006, 47(7): 1216-1224. [4] Auvichayapat N, Rotenberg A, Gersner R, et al. Transcranial direct current stimulation for treatment of refractory childhood focal epilepsy[J]. Brain Stimulation, 2013, 6(4): 696-700. [5] Bennabi D, Nicolier M, Monnin J, et al. Pilot study of feasibility of the effect of treatment with tDCS in patients suffering from treatment-resistant depression treated with escitalopram[J]. Clinical Neurophysiology, 2015, 126(6): 1185-1189. [6] Shiozawa P, da Silva ME, Cordeiro Q. Transcranial direct current stimulation for treating depression in a patient with right hemispheric dominance: a case study[J]. The journal of ECT, 2015, 31(3): 201-202. [7] Shah-Basak PP, Norise C, Garcia G, et al. Individualized treatment with transcranial direct current stimulation in patients with chronic non-fluent aphasia due to stroke[J]. Frontiers in Human Neuroscience, 2015, 9: 201. [8] Fridriksson J, Richardson J D, Baker J M, et al. Transcranial direct current stimulation improves naming reaction time in fluent aphasia a double-blind, sham-controlled study[J]. Stroke, 2011, 42(3): 819-821. [9] Fagerlund AJ, Hansen OA, Aslaksen PM. Transcranial direct current stimulation as a treatment for patients with fibromyalgia: a randomized controlled trial[J]. Pain, 2015, 156(1): 62-71. [10] Castillo-Saavedra L, Gebodh N, Bikson M, et al. Clinically effective treatment of fibromyalgia pain with high-definition transcranial direct current stimulation: phase II open-label dose optimization[J]. The Journal of Pain, 2016, 17(1): 14-26. [11] den Uyl T E, Gladwin T E, Wiers R W. Transcranial direct current stimulation, implicit alcohol associations and craving[J]. Biological Psychology, 2015, 105: 37-42. [12] da Silva MC, Conti CL, Klauss J, et al. Behavioral effects of transcranial direct current stimulation (tDCS) induced dorsolateral prefrontal cortex plasticity in alcohol dependence[J]. Journal of Physiology-Paris, 2013, 107(6): 493-502. [13] Wietschorke K, Lippold J, Jacob C, et al. Transcranial direct current stimulation of the prefrontal cortex reduces cue-reactivity in alcohol-dependent patients[J]. Journal of Neural Transmission, 2016, 123(10): 1173-1178. [14] Hummel FC, Celnik P, Pascual-Leone A, et al. Controversy: noninvasive and invasive cortical stimulation show efficacy in treating stroke patients[J]. Brain Stimulation, 2008, 1(4): 370-382. [15] Kwakkel G, Kollen BJ, van der Grond J, et al. Probability of regaining dexterity in the flaccid upper limb impact of severity of paresis and time since onset in acute stroke[J]. Stroke, 2003, 34(9): 2181-2186. [16] Hummel F, Celnik P, Giraux P, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke[J]. Brain, 2005, 128(3): 490-499. [17] Nitsche MA, Seeber A, Frommann K, et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex[J]. The Journal of Physiology, 2005, 568(1): 291-303. [18] Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation[J]. The Journal of Physiology, 2000, 527(3): 633-639. [19] Fregni F, Boggio P S, Mansur CG, et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients[J]. Neuroreport, 2005, 16(14): 1551-1555. [20] Ho K A, Taylor JL, Chew T, et al. The effect of transcranial direct current stimulation (tDCS) electrode size and current intensity on motor cortical excitability: evidence from single and repeated sessions[J]. Brain Stimulation, 2016, 9(1): 1-7. [21] Murray LM, Edwards DJ, Ruffini G, et al. Intensity dependent effects of transcranial direct current stimulation on corticospinal excitability in chronic spinal cord injury[J]. Archives of Physical Medicine and Rehabilitation, 2015, 96(4): S114-S121. [22] Been G, Ngo T T, Miller S M, et al. The use of tDCS and CVS as methods of non-invasive brain stimulation[J]. Brain Research Reviews, 2007, 56(2): 346-361. [23] Miranda PC, Lomarev M, Hallett M. Modeling the current distribution during transcranial direct current stimulation[J]. Clinical Neurophysiology, 2006, 117(7): 1623-1629. [24] Barwood CHS, Murdoch BE, Whelan BM, et al. Improved language performance subsequent to low-frequency rTMS in patients with chronic non-fluent aphasia post-stroke[J]. European Journal of Neurology, 2011, 18(7): 935-943. [25] De Ridder D, De Mulder G, Walsh V, et al. Magnetic and electrical stimulation of the auditory cortex for intractable tinnitus: case report[J]. Journal of Neurosurgery, 2004, 100(3): 560-564. [26] Russo C, Souza Carneiro MI, Bolognini N, et al. Safety review of transcranial direct current stimulation in stroke[J]. Neuromodulation: Technology at the Neural Interface, 2017, 20(3):215\|222. [27] McCreery DB, Agnew WF, Yuen TGH, et al. Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation[J]. IEEE Transactions on Biomedical Engineering, 1990, 37(10): 996-1001. [28] Miranda PC, Faria P, Hallett M. What does the ratio of injected current to electrode area tell us about current density in the brain during tDCS?[J]. Clinical Neurophysiology, 2009, 120(6): 1183-1187. [29] Kanai R, Chaieb L, Antal A, et al. Frequency-dependent electrical stimulation of the visual cortex[J]. Current Biology, 2008, 18(23): 1839-1843. [30] Schwiedrzik C M. Retina or visual cortex? The site of phosphene induction by transcranial alternating current stimulation[J]. Frontiers in Integrative Neuroscience, 2009, 3: 6. [31] Nitsche MA, Schauenburg A, Lang N, et al. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human[J]. Journal of Cognitive Neuroscience, 2003, 15(4): 619-626. [32] Monai H, Ohkura M, Tanaka M, et al. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain[J]. Nature Communications, 2016, 11100, 7. [33] 杨远滨, 肖娜, 李梦瑶, 等. 经颅磁刺激与经颅直流电刺激的比较[J]. 中国康复理论与实践, 2011, 17(12): 1131-1135. [34] 黄珺, 黄彬鉴. 运动诱发电位[J]. 国外医学: 物理医学与康复学分册, 2005, 25(2): 56-58. [35] 刘浩, 贾延兵, 王旭豪, 等. 周围神经电刺激对脑卒中患者运动皮质兴奋性的影响[J]. 中国康复医学杂志, 2016, 31(8): 878-883. [36] Ardolino G, Bossi B, Barbieri S, et al. Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain[J]. The Journal of Physiology, 2005, 568(2): 653-663. [37] Zheng Xin, Mathys C, Alsop DC, et al. Modulating Regional Cerebral Blood Flow With Transcranial Direct Current Stimulation (tDCS)[J]. Neuroimage, 2009, 47(47):S173-S173. [38] Barton\|Rowledge L. Long term effects of transcranial direct current stimulation on NMDA receptor[J]. Alyssa Caparelli, 2016,1:116-123. [39] Fritsch B, Reis J, Martinowich K, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning[J]. Neuron, 2010, 66(2): 198-204. [40] Zheng Xin, Alsop DC, Schlaug G. Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow[J]. Neuroimage, 2011, 58(1): 26-33. [41] Kim S, Stephenson MC, Morris PG, et al. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: A 7T magnetic resonance spectroscopy study[J]. Neuroimage, 2014, 99: 237-243. [42] Stagg CJ, Bachtiar V, Johansen-Berg H. The role of GABA in human motor learning[J]. Current Biology, 2011, 21(6): 480-484. [43] Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG[J]. PLoS ONE, 2010, 5(11): e13766. [44] Vossen A, Gross J, Thut G. Alpha power increase after transcranial alternating current stimulation at alpha frequency (α\|tACS) reflects plastic changes rather than entrainment[J]. Brain Stimulation, 2015, 8(3): 499-508. [45] Nitsche M A, Fricke K, Henschke U, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans[J]. The Journal of Physiology, 2003, 553(1): 293-301. [46] Csifcsak G, Antal A, Hillers F, et al. Modulatory effects of transcranial direct current stimulation on laser-evoked potentials[J]. Pain Medicine, 2009, 10(1): 122-132. [47] Liebetanz D, Fregni F, Monte-Silva KK, et al. After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression[J]. Neuroscience Letters, 2006, 398(1): 85-90. [48] Monte\|Silva K, Kuo MF, Hessenthaler S, et al. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation[J]. Brain Stimulation, 2013, 6(3): 424-432. [49] Liebetanz D, Nitsche MA, Tergau F, et al. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability[J]. Brain, 2002, 125(10): 2238-2247. [50] Monte\|Silva K, Kuo MF, Liebetanz D, et al. Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS)[J]. Journal of Neurophysiology, 2010, 103(4): 1735-1740. [51] Neuling T, Rach S, Herrmann CS. Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states[J]. Frontiers in Human Neuroscience, 2013, 7:161. [52] 樊京京, 徐秦岚, 郭莉, 等. 经颅直流电刺激在脑卒中后康复的应用[J]. 临床神经病学杂志, 2016, 29(1): 76-77. [53] 纪爱辉. 重复经颅磁刺激治疗对脑卒中患者运动功能及 MEP 的影响[D]. 济南:山东大学, 2014. [54] Peters HT, Edwards DJ, Wortman-Jutt S, et al. Moving forward by stimulating the brain: transcranial direct current stimulation in post-stroke hemiparesis[J]. Frontiers in Human Neuroscience, 2016, 10:394. [55] Pérez-Fernández C, Sánchez-Kuhn A, Cánovas R, et al. The effect of transcranial direct current stimulation (tDCS) over human motor function[C]//International Conference on Bioinformatics and Biomedical Engineering. Berlin: Springer International Publishing, 2016: 478-494. [56] Cantarero G, Spampinato D, Reis J, et al. Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy[J]. The Journal of Neuroscience, 2015, 35(7): 3285-3290. [57] Jeffery DT, Norton JA, Roy FD, et al. Effects of transcranial direct current stimulation on the excitability of the leg motor cortex[J]. Experimental Brain Research, 2007, 182(2): 281-287. [58] Tanaka S, Hanakawa T, Honda M, et al. Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation[J]. Experimental Brain Research, 2009, 196(3): 459-465. [59] Tanaka S, Takeda K, Otaka Y, et al. Single session of transcranial direct current stimulation transiently increases knee extensor force in patients with hemiparetic stroke[J]. Neurorehabilitation and Neural Repair, 2011, 25(6): 565-569. [60] Nair D, Renga V, Hamelin S, et al. Improving motor function in chronic stroke patients using simultaneous occupational therapy and tDCS[J]. Stroke, 2008, 39:542-542. [61] Reis J, Fritsch B. Modulation of motor performance and motor learning by transcranial direct current stimulation[J]. Current Opinion in Neurology, 2011, 24(6): 590-596. [62] Celnik P, Paik NJ, Vandermeeren Y, et al. Effects of combined peripheral nerve stimulation and brain polarization on performance of a motor sequence task after chronic stroke[J]. Stroke, 2009, 40(5): 1764-1771. [63] Lindenberg R, Renga V, Zhu LL, et al. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients[J]. Neurology, 2010, 75(24): 2176-2184. [64] Hummel FC, Voller B, Celnik P, et al. Effects of brain polarization on reaction times and pinch force in chronic stroke[J]. BMC Neuroscience, 2006, 7 (1):1-10.