Progress in the Preparation of Fluorescence-Encoded Microspheres
Li Yan1, Luo Cheng1*, Wu Daocheng2
1 (School of Medicine, Yichun University, Yichun 336000,Jiangxi, China) 2(Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China)
Abstract:Suspension array is a promising platform for multiplex analyses with broad applications in science research and clinical diagnosis. As one of the key components for the suspension array, fluorescence-encoded microspheres have received much attention and a lot of achievements have been made. In this review, the analysis pattern and applications of suspension array were introduced, and recent advances in the fluorescence-encoded microspheres were summarized according to the classification of preparationmethods including swelling method, layer-by-layer (LBL) self-assembly, embedding in microspheres, microfluidic techniques and membrane emulsification. Current challenges and future directions of fluorescence-encoded microspheres were also outlined.
李 艳, 罗 成, 吴道澄. 荧光编码微球的制备研究进展[J]. 中国生物医学工程学报, 2017, 36(2): 219-227.
Li Yan, Luo Cheng, Wu Daocheng. Progress in the Preparation of Fluorescence-Encoded Microspheres. Chinese Journal of Biomedical Engineering, 2017, 36(2): 219-227.
[1] Nolan JP, Sklar LA. Suspension array technology: evolution of the flat-array paradigm[J]. Trends Biotechnol, 2002, 20 (1): 9-12. [2] Nolan JP, Mandy F. Multiplexed and microparticle-based analyses: Quantitative tools for the large-scale analysis of biological systems[J]. Cytom Part A, 2006, 69A (5): 318-325. [3] Wilson R, Cossins AR, Spiller DG. Encoded microcarriers for high-throughput multiplexed detection[J]. Angew Chem Int Edit, 2006, 45 (37): 6104-6117. [4] 张鑫, 赵鹏翔, 吕宝北, 等. 悬浮芯片系统的结构组成及应用进展[J]. 北京工业大学学报, 2015, 41(12): 1810-1816. [5] 程涛, 王慧煜, 梅琳, 等. 悬浮芯片技术应用进展[J]. 生物技术通报, 2011(9): 48-51. [6] 朱鹏, 张青雯, 祁芝珍, 等. 基于Luminex悬浮芯片的鼠疫耶尔森菌SNP分型方法研究[J]. 军事医学, 2012, 36(7): 502-507. [7] Sun Zhiyong, Peng Yuan, Zhang Manci, et al. Simultaneous and highly sensitive detection of six different foodborne pathogens by high-throughput suspension array technology [J]. Food Control, 2014, 40: 300-309. [8] Nolen BM, Lomakin A, Marrangoni A, et al. Urinary protein biomarkers in the early detection of lung cancer [J]. Cancer Prev Res, 2015, 8 (2):111-119. [9] Tong Weihua, Ye Fei, He Liang, et al. Serum biomarker panels for diagnosis of gastric cancer [J]. Onco Targets Ther, 2016, 9: 2455-2463. [10] Birtwell SW,Morgan H. Microparticle encoding technologies for high-throughput multiplexed suspension assays[J]. Integr Biol, 2009, 1 (5-6): 345-362. [11] Braeckmans K, De Smedt SC, Leblans M, et al. Encoding microcarriers: present and future technologies[J]. Nat Rev Drug Discov, 2002, 1 (6): 447-456. [12] Leng Yuankui, Sun Kang, Chen Xiaoyuan, et al. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection[J]. Chem Soc Rev, 2015, 44 (15): 5552-5595. [13] Han Mingyong, Gao Xiaohu, Su JZ, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules[J]. Nat Biotech, 2001, 19 (7): 631-635. [14] Zhang Fan, Shi Qihui, Zhang Yichi, et al. Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding[J]. Adv Mater, 2011, 23 (33): 3775-3779. [15] Wang Gang, Zhang Pengfei, Dou Hongjing, et al. Efficient incorporation of quantum dots into porous microspheres through a solvent-evaporation approach[J]. Langmuir, 2012, 28 (14): 6141-6150. [16] Song Tao, Zhang Qi, Lu Chaoliang, et al. Structural design and preparation of high-performance QD-encoded polymer beads for suspension arrays[J]. J Mater Chem, 2011, 21 (7): 2169-2177. [17] Song Tao, Liu Junqing, Li Wenbin, et al. Self-healing encapsulation strategy for preparing highly stable, functionalized quantum-dot barcodes[J]. ACS Appl Mater Interfaces, 2014, 6 (4): 2745-2752. [18] Gao Xiaohu, Nie Shuming. Doping mesoporous materials with multicolor quantum dots[J]. J Phys Chem, 2003, 107 (42): 11575-11578. [19] Gao Xiaohu, Nie Shuming. Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry[J]. Anal Chem, 2004, 76 (8): 2406-2410. [20] Hu Shanghsiu, Gao Xiaohu. Stable encapsulation of quantum dot barcodes with silica shells[J]. Adv Funct Mater, 2010, 20 (21): 3721-3726. [21] Wang Dayang, Rogach AL, Caruso F. Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly[J]. Nano Lett, 2002, 2 (8): 857-861. [22] Sukhanova A, Susha AS, Bek A, et al. Nanocrystal-encoded fluorescent microbeads for proteomics: antibody profiling and diagnostics of autoimmune diseases[J]. Nano Lett, 2007, 7 (8): 2322-2327. [23] Allen CN, Lequeux N, Chassenieux C, et al. Optical analysis of beads encoded with quantum dots coated with a cationic polymer[J]. Adv Mater, 2007, 19 (24): 4420-4425. [24] Schnackel A, Hiller S, Reibetanz U, et al. Fluorescent bead arrays by means of layer-by-layer polyelectrolyte adsorption[J]. Soft Matter, 2007, 3 (2): 200-206. [25] Nanthakumar A, Pon RT, Mazumder A, et al. Solid-phase oligonucleotide synthesis and flow cytometric analysis with microspheres encoded with covalently attached fluorophores[J]. Bioconjugate Chem, 2000, 11 (2): 282-288. [26] Kozak D, Kithva P, Bax J, et al. Development of encoded particle-polymer arrays for the accelerated screening of antifouling layers[J]. Chem Commun, 2011, 47 (34): 9687-9689. [27] Zhang Zhiling, Long Yao, Pan Jianbo, et al. Preparation of fluorescence-encoded microspheres in a core-shell structure for suspension arrays[J]. J Mater Chem, 2010, 20 (6): 1179-1185. [28] Liu Qinghao, Liu Jia, Guo Jinchun, et al. Preparation of polystyrene fluorescent microspheres based on some fluorescent labels[J]. J Mater Chem, 2009, 19 (14): 2018-2025. [29] Wu Youshen, Li Yan, Xu Jianhua, et al. Incorporating fluorescent dyes into monodisperse melamine-formaldehyde resin microspheres via an organic sol-gel process: a pre-polymer doping strategy[J]. J Mater Chem B, 2014, 2 (35): 5837-5846. [30] Vaidya SV, Gilchrist ML, Maldarelli C, et al. Spectral bar coding of polystyrene microbeads using multicolored quantum dots[J]. Anal Chem, 2007, 79 (22): 8520-8530. [31] Yang Yunhua, Wen Zhongkai, Dong Yuping, et al. Incorporating CdTe nanocrystals into polystyrene microspheres: towards robust fluorescent beads[J]. Small, 2006, 2 (7): 898-901. [32] Chan Y, Zimmer JP, Stroh M, et al. Incorporation of luminescent nanocrystals into monodisperse core-shell silica microspheres[J]. Adv Mater, 2004, 16 (23-24): 2092-2097. [33] Graf C, Dembski S, Hofmann A, et al. A general method for the controlled embedding of nanoparticles in silica colloids[J]. Langmuir, 2006, 22 (13): 5604-5610. [34] Kuang Min, Wang Dayang, Bao Haobo, et al. Fabrication of multicolor-encoded microspheres by tagging semiconductor nanocrystals to hydrogel spheres[J]. Adv Mater, 2005, 17 (3): 267-270. [35] Gong Yanjun, Gao Mingyuan, Wang Dayang, et al. Incorporating fluorescent CdTe nanocrystals into a hydrogel via hydrogen bonding: toward fluorescent microspheres with temperature-responsive properties[J]. Chem Mater, 2005, 17 (10): 2648-2653. [36] Wang Xiebing, Wang Gang, Li Wanwan, et al. NIR-emitting quantum dot-encoded microbeads through membrane emulsification for multiplexed immunoassays[J]. Small, 2013, 9 (19): 3327-3335. [37] Sun Xiaoting, Liu Mei, Xu Zhangrun. Microfluidic fabrication of multifunctional particles and their analytical applications[J]. Talanta, 2014, 121: 163-177. [38] Gerver RE, Gomez-Sjoberg R, Baxter BC, et al. Programmable microfluidic synthesis of spectrally encoded microspheres[J]. Lab Chip, 2012, 12 (22): 4716-4723. [39] Fournier-Bidoz S, Jennings TL, Klostranec JM, et al. Facile and rapid one-step mass preparation of quantum-dot barcodes[J]. Angew Chem Int Edit, 2008, 47 (30): 5577-5581. [40] Ji Xinghu, Zhang Nangang, Cheng Wei, et al. Integrated parallel microfluidic device for simultaneous preparation of multiplex optical-encoded microbeads with distinct quantum dot barcodes[J]. J Mater Chem, 2011, 21 (35): 13380-13387. [41] Chen Yang, Dong Pengfei, Xu Jianhong, et al. Microfluidic generation of multicolor quantum-dot-encoded core-shell microparticles with precise coding and enhanced stability[J]. Langmuir, 2014, 30 (28): 8538-8542. [42] Cunin F, Schmedake TA, Link JR, et al. Biomolecular screening with encoded porous-silicon photonic crystals[J]. Nat Mater, 2002, 1 (1): 39-41. [43] Zhao Yuanjin, Zhao Xiangwei, Hu Jing, et al. Encoded porous beads for label-free multiplex detection of tumor markers[J]. Adv Mater, 2009, 21 (5): 569-572. [44] Ye Baofen, Ding Haibo, Cheng Yao, et al. Photonic crystal microcapsules for label-free multiplex detection[J]. Adv Mater, 2014, 26 (20): 3270-3274. [45] Li Juan, Zhao Xiangwei, Zhao Yuanjin, et al. Quantum-dot-coated encoded silica colloidal crystals beads for multiplex coding[J]. Chem Commun, 2009, 17 (17): 2329-2331. [46] Li Juan, Zhao Xiangwei, Zhao YuanJin, et al. Colloidal crystal beads coated with multicolor CdTe quantum dots: microcarriers for optical encoding and fluorescence enhancement[J]. J Mater Chem, 2009, 19 (36): 6492-6497. [47] Chen Chi, Zhang Pengfei, Gao Guanhui, et al. Near-infrared-emitting two-dimensional codes based on lattice-strained core/(doped) shell quantum dots with long fluorescence lifetime[J]. Adv Mater, 2014, 26 (36): 6313-6317. [48] Wang Gang, Leng Yuankui, Dou Hongjing, et al. Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis b detection[J]. ACSNano, 2013, 7 (1): 471-481. [49] Li Yunhong, Song Tao, Liu Junqing, et al. An efficient method for preparing high-performance multifunctional polymer beads simultaneously incorporated with magnetic nanoparticles and quantum dots[J]. J Mater Chem, 2011, 21 (33): 12520-12528. [50] Sathe TR, Agrawal A, Nie Shuming. Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation[J]. AnalChem, 2006, 78 (16): 5627-5632. [51] Wilson R, Spiller DG, Prior IA, et al. Magnetic microspheres encoded with photoluminescent quantum dots for multiplexed detection[J]. J Mater Chem, 2007, 17 (41): 4400-4406. [52] Wilson R, Spiller DG, Prior IA, et al. A simple method for preparing spectrally encoded magnetic beads for multiplexed detection[J]. ACS Nano, 2007, 1 (5): 487-493. [53] Insin N, Tracy JB, Lee H, et al. Incorporation of iron oxide nanoparticles and quantum dots into silica microspheres[J]. ACS Nano, 2008, 2 (2): 197-202. [54] Li Yan, Wu Youshen, Luo Cheng, et al. Rewritable magnetic fluorescence-encoded microspheres: preparation, characterization, and recycling[J]. J Mater Chem C, 2015, 3 (31): 8262-8271. [55] Wang Gang, Leng Yuankui, Guo Heze, et al. Efficient preparation of magnetic quantum dot barcodes[J]. J Mater Chem B, 2014, 2 (47): 8310-8313. [56] Zhao Yuanjin, Shum Hocheung, Chen Haosheng, et al. Microfluidic generation of multifunctional quantum dot barcode particles[J]. J Am Chem Soc, 2011, 133 (23): 8790-8793. [57] Gao Yali, Lam AWY, Chan WCW. Automating quantum dot barcode assays using microfluidics and magnetism for the development of a point-of-care device[J]. ACS Appl Mater Interfaces, 2013, 5 (8): 2853-2860.