Abstract:There is a growing demand of vascular grafts for clinical treatment, the problem is also general, and especially the small-diameter vascular’s incidence rate of restenosis is high after implantation. Tissue engineering has been applied in the fabrication of vascular grafts, the bionic and tissue regeneration. Tissue engineered vascular graft have been developed as alternative to autografts, but the low patency limit their clinical application. In this review, we introduced the latest develepment of vascular grafts in both domestic and foreign research, including the fabrication and modification of artificial vascular scaffolds, the role of cellular and extracellular microenvironment in artificial vascular reconstruction. We also discussed the problems and prospects of the directions for the future research of tissue engineered vascular grafts.
[1] Stegemann JP, Kaszuba SN, Rowe SL. Advances in vascular tissue engineering using protein-based biomaterials [J]. Tissue Eng, 2007, 13(11): 2601-2613. [2] Browning MB, Dempsey D, Guiza V, et al. Multilayer vascular grafts based on collagen-mimetic proteins [J]. Acta Biomater, 2011, 8(3):1010-1021. [3] Bouten CV, Dankers PY, Driessen-Mol A, et al. Substrates for cardiovascular tissue engineering [J]. Adv Drug Deliv Rev, 2011, 63(4-5): 221-241. [4] Dvir T, Timko BP, Kohane DS, et al. Nanotechnological strategies for engineering complex tissues [J]. Nat Nanotechnol, 2011, 6(1): 13-22. [5] Stevens MM, George JH. Exploring and engineering the cell surface interface [J]. Science, 2005, 310(5751): 1135-1138. [6] Ma PX. Biomimetic materials for tissue engineering [J]. Adv Drug Deliv Rev, 2008, 60(2): 184-198. [7] Li Yuanpei, Xiao Wenwu, Xiao Kai, et al. Well-defined, reversible boronate crosslinked nanocarriers for targeted drug delivery in response to acidicpH values and cis-diols [J]. Angew Chem Int Ed Engl, 2012, 51(12): 2864-2869. [8] Liu Wenying, Thomopoulos S, Xia Younan. Electrospun nanofibers for regenerative medicine [J]. Adv Healthc Mater, 2012, 1(1): 10-25. [9] Cleary MA, Geiger E, Grady C, et al. Vascular tissue engineering: The next generation [J]. Trends Mol Med, 2012, 18(7): 394-404. [10] Fortier A,Gullapalli V,Mirshams RA. Review of biomechanical studies of arteries and their effect on stent performance [J]. IJC Heart & Vessels, 2014, 4: 12-18. [11] Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering [J]. Trends Biotechnol, 1998, 16(4): 224-230. [12] L’Heureux N, Dusserre N, Marini A, et al. The evolution of tissue-engineered vascular grafts-from research to clinical practice [J]. Nat Clin Pract Cardiovasc Med, 2007, 4(7): 389-395. [13] Wise SG, Byrom MJ, Waterhouse A, et al. A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties [J]. Acta Biomater, 2011, 7(1): 295-303. [14] McKenna KA, Hinds MT, Sarao RC, et al. Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft biomaterials [J]. Acta Biomater, 2011, 8(1): 225-233. [15] Klinkert P, Post PN, Breslau PJ, et al. Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature [J]. Eur J Vasc Endovasc Surg, 2004, 27(4):357-362. [16] Greenwald SE, Berry CL. Improving vascular grafts: The importance of mechanical and haemodynamic properties [J]. J Pathol, 2000, 190(3): 292-299. [17] Wang Xianfeng, Ding Bin, Li Bingyun. Biomimetic electrospun nanofibrous structures for tissue engineering [J]. Mater Today (Kidlington), 2013, 16(6): 229-241. [18] Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers [J]. J Polym Sci B Polym Phys, 2011, 49(12): 832-864. [19] Seifu DG, Purnama A, Mequanint K, et al. Small-diameter vascular tissue engineering [J]. Nat Rev Cardiol, 2013, 10(7): 410-421. [20] L'Heureux N, Dusserre N, Konig G, et al. Human tissue engineered blood vessel for adult arterial revascularization [J]. Nat Med, 2006, 12(3): 361-365. [21] Ravi S, Chaikof EL. Biomaterials for vascular tissue engineering [J]. Regen Med, 2010, 5(1): 107-120. [22] Shin’oka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery [J]. N Engl J Med, 2001, 344(7): 532-533. [23] Dahl SL, Kypson AP, Lawson JH, et al. Readily available tissue-engineered vascular grafts [J]. Sci Transl Med, 2011, 3(68): 68ra9. [24] Sato M, Nakazawa Y, Takahashi R, et al. Small-diameter vascular grafts of Bombyx mori silk fibroin prepared by a combination of electrospinning and sponge coating [J]. Mater Lett, 2010, 64(16): 1786-1788. [25] Huang Chen, Chen Rui, Ke Qinfei, et al. Electrospun collagen-chitosan-TPU nanofibrous scaffolds for tissue engineered tubular grafts [J]. Colloids Surf B Biointerfaces, 2011, 82(2): 307-315. [26] Soletti L, Nieponice A, Hong Yi, et al. In vivo performance of a phospholipid-coated bioerodable elastomeric graft for small-diameter vascular applications [J]. J Biomed Mater Res A, 2011, 96(2): 436-448. [27] Feldman PL, Griffith OW, Stuehr DJ. The surprising life of nitric oxide [J]. Chem Eng News,1993,71(51): 26-38. [28] Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology [J]. Phamacol Rev, 1991, 43(2): 109-142. [29] Bredt DS, Snyder SH. Biological roles of nitric oxide [J]. Sci Am, 1992, 266(5): 68-77. [30] Wang Yuanyuan, Chen Siyuan, Pan Yiwa, et al. Rapid in situ endothelialization of small diameter vascular graft with catalytic nitric oxide generation and promoted endothelial cell adhesion[J]. J Mater Chem B, 2015, 3(47): 9212-9222. [31] Muylaert DE, Fledderus JO, Bouten CV, et al. Combining tissue repair and tissue engineering; bioactivating implantable cell-free vascular scaffolds [J]. Heart, 2014, 100(23): 1825-1830. [32] Roh JD, Sawh-Martinez R, Brennan MP, et al. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling [J]. Proc Natl Acad Sci USA, 2010, 107(10): 4669-4674. [33] Hosono M, Ueda M, Suehiro S, et al. Neointimal formation at the sites of anastomosis of the internal thoracic artery grafts after coronary artery bypass grafting in human subjects: an immunohistochemical analysis [J]. J Thorac Cardiovasc Surg, 2000, 120(2): 319-328. [34] Krawiec JT, Vorp DA. Adult stem cell-based tissue engineered blood vessels [J]. Biomaterials, 2012, 33(12): 3388-3400. [35] Talacua H, Smits AI, Muylaert DE, et al. In situ tissue engineering of functional small-diameter blood vessels by host circulating cells only [J]. Tissue Eng Part A, 2015, 21(19-20): 2583-2594. [36] Hibino N, Villalona G, Pietris N, et al. Tissue-engineered vascular grafts form neovessels that arise from regeneration of the adjacent blood vessel [J]. FASEB J, 2011, 25(8): 2731-2739. [37] Pennel T, Zilla P, Bezuidenhout D. Differentiating transmural from transanastomotic prosthetic graft endothelialization through an isolation loop-graft model [J]. J Vasc Surg, 2013, 58(4): 1053-1061. [38] Wang Xianfeng, Ding Bin, Yu Jianyong, et al. Electro-netting: Fabrication of two-dimensional nano-nets for highly sensitive trimethylamine sensing [J]. Nanoscale, 2011, 3(3): 911-915. [39] Ding Bin, Wang Xianfeng, Yu Jianyong, et al. Polyamide 6 composite nano-fiber/net functionalized by polyethyleneimine on quartz crystal microbalance for highly sensitive formaldehyde sensors [J]. J Mater Chem, 2011, 21(34): 12784-12792. [40] Wang Xianfeng, Ding Bin, Yu Jianyong, et al. A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance [J]. Nanotechnology, 2010, 21(5): 055502. [41] Barakat NA, Kanjwal MA, Sheikh FA. Spider-net within the N6, PVA and PU electrospun nanofiber mats using salt addition: Novel strategy in the electrospinning process [J]. Polymer, 2009, 50(18): 4389-4396. [42] Chen Mei-Chin, Sun Yu-Chin, Chen Yuan-Hsiang. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering [J]. Acta Biomater, 2013, 9(3): 5562-5572. [43] Huang Chengyang, Fu Xiaoling, Liu Jie, et al. The involvement of integrin β1 signaling in the migration and myofibroblastic differentiation of skin fibroblasts on anisotropic collagen-containing nanofibers [J]. Biomaterials, 2012, 33(6): 1791-1800. [44] Xie Jingwei, Macewan MR, Ray WZ, et al. Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications [J]. ACS Nano, 2010, 4(9): 5027-5036. [45] Wan Lingshu, Xu Zhikang. Polymer surfaces structured with random or aligned electrospun nanofibers to promote the adhesion of blood platelets [J]. J Biomed Mater Res A, 2009, 89(1): 168-175. [46] Zhu Meifeng, Wang Zhihong, Zhang Jiamin, et al. Circumferentially aligned fibers guided functional neoartery regeneration in vivo [J]. Biomaterials, 2015, 61: 85-94. [47] Holzwarth JM, Ma PX. 3D nanofibrous scaffolds for tissue engineering [J]. J Mater Chem, 2011, 21(28): 10243-10251. [48] Wang Hongjun, van Blitterswijk CA. The role of three-dimensional polymeric scaffold configuration on the uniformity of connective tissue formation by adipose stromal cells [J]. Biomaterials, 2010, 31(15): 4322-4329. [49] Centola M, Rainer A, Spadaccio C, et al. Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft [J]. Biofabrication, 2010, 2(1): 014102. [50] Thomas V, Zhang Xing, Vohra YK. A biomimetic tubular scaffold with spatially designed nanofibers of protein/PDS bio-blends [J]. Biotechnol Bioeng, 2009, 104(5): 1025-1033. [51] Xie Jingwei, MacEwan MR, Schwartz AG, et al. Electrospun nanofibers for neural tissue engineering [J]. Nanoscale, 2010, 2(1): 35-44. [52] Ju Youngmin, Choi J, Atala A, et al. Bilayered scaffold for engineering cellularized blood vessels [J]. Biomaterials, 2010, 31(15): 4313-4321. [53] Uttayarat P, Perets A, Li Mengyan, et al. Micropatterning of threedimensional electrospun polyurethane vascular grafts [J]. Acta Biomater, 2010, 6(11): 4229-4237. [54] Forte A, Rinaldi B, Berrino L, et al. Novel potential targets for prevention of arterial restenosis: insights from the pre-clinical research [J]. Clin Sci (Lond), 2014, 127(11): 615-634.