Abstract:A brain computer interface (BCI) makes a pathway between the human brain and the ambient environment, making it possible to control external devices directly by brain. The experimental paradigm is an important aspect for the BCI research, through which the brain signal features required for the classification of the BCI are elicited. In recent years, numerous studies on experimental paradigms have been carried out to improve the performance of BCI. This article reviewed the current status of studies on experimental paradigms of the visual event-related potential based BCI, including paradigm configuration, pattern of stimulus presentation, stimulus type, language model, and hybrid BCI. The challenges and future directions were discussed as well.
[1]Wolpaw JR, Birbaumer N, McFarland DJ, et al. Braincomputer interfaces for communication and control[J]. Clinical Neurophysiology, 2002, 113(6): 767-791.
[2]王行愚, 金晶, 张宇, 等. 脑控:基于脑-机接口的人机融合控制[J]. 自动化学报, 2013, 39(3): 208-221.
[3]曹艳, 郑筱祥. 植入式脑机接口发展概况[J]. 中国生物医学工程学报, 2014, 33(6): 659-665.
[4]刘小燮, 毕胜. 脑机接口技术的康复应用及研究进展[J]. 中国康复医学杂志, 2014, 29(10): 982-986.
[5]Zhang Rui, Li Yuanqing. Design and application of multimodel BCI game system[J]. Computer Engineering and Applications, 2012, 48(22): 65-69.
[6]Vidal J. Toward direct braincomputer communication[J]. Annual Reviews in Biophysics and Bioengineering, 1973, 2(1): 157-180.
[7]Aloise F, Schettini F, Arico P, et al. A comparison of classification techniques for a gazeindependent P300\|based braincomputer interface[J]. Journal of Neural Engineering, 2012, 9(4): 045012.
[8]Krusienski DJ, Sellers EW, Cabestaing F, et al. A comparison of classification techniques for the P300 speller[J]. Journal of Neural Engineering, 2006, 3(4): 299-305.
[9]徐宝国, 宋爱国, 费树岷. 在线脑机接口中脑电信号的特征提取与分类方法[J]. 电子学报, 2011, 39(5): 1025-1030.
[10]McCane LM, Heckman SM, McFarland DJ, et al. P300-based braincomputer interface (BCI) eventrelated potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. agematched controls[J]. Clinical Neurophysiology,
2015, 126(11):2124-2131.
[11]孔丽文, 薛召军, 陈龙, 等. 基于虚拟现实环境的脑机接口技术研究进展[J]. 电子测量与仪器学报, 2015, 29(3): 317-327.
[12]王金甲, 杨成杰. P300脑机接口控制智能家居系统研究[J]. 生物医学工程学杂志, 2014, 31(4): 762-766.
[13]Treder MS, Blankertz B. (C)overt attention and visual speller design in an ERPbased braincomputer interface[J]. Behav Brain Funct, 2010, 6:28.
[14]刘铁军, 张锐, 徐鹏. 基于运动想象的脑机接口关键技术研究[J]. 中国生物医学工程学报, 2014, 33(6): 644-651.
[15]Gao Shangkai, Wang Yijun, Gao Xiaorong, et al. Visual and auditory braincomputer interfaces[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(5): 1436-1447.
[16]Donchin E, Spencer KM, Wijesinghe R. The mental prosthesis: assessing the speed of a P300-based braincomputer interface[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 174-179.
[17]郭苗苗, 徐桂芝, 王磊, 等. 听觉脑-机接口技术实验范式的研究进展[J]. 中国生物医学工程学报, 2013, 32(5): 613-619.
[18]Rutkowski TM, Mori H. Tactile and boneconduction auditory brain computer interface for vision and hearing impaired users[J]. Journal of Neuroscience Methods, 2015, 244: 45-51.
[19]Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing eventrelated brain potentials[J]. Electroencephalography and clinical neurophysiology, 1988, 70(6): 510-523.
[20]马征, 邱天爽. 脑机接口中的一种事件相关电位分离模型[J]. 中国科学:信息科学, 2015, 45(9): 1218-1228.
[21]Polich J. Updating P300: An integrative theory of P3a and P3b[J]. Clinical Neurophysiology, 2007, 118(10): 2128-2148.
[22]Schalk G, McFarland D, Hinterberger T, et al. BCI 2000: a generalpurpose braincomputer interface(BCI) system[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1034-1043.
[23]Fazel-Rezai R. Human error in P300 speller paradigm for braincomputer interface[C]//Proceedings of the 29th Annual International Conference of the IEEE EMBS. New York: IEEE, 2007: 2516-2519.
[24]Salvaris M, Sepulveda F. Perceptual errors in the farwell and donchin matrix speller[C]//Proceedings of the 4th International IEEE EMBS Conference on Neural Engineering. New York: IEEE, 2009: 275-278.
[25]Townsend G, LaPallo BK, Boulay CB, et al. A novel P300-based braincomputer interface stimulus presentation paradigm: Moving beyond rows and columns[J]. Clinical Neurophysiology, 2010, 121(7): 1109-1120.
[26]Martens SMM, Hill NJ, Farquhar J, et al. Overlap and refractory effects in a braincomputer interface speller based on the visual P300 eventrelated potential[J]. Journal of Neural Engineering, 2009, 6(2): 026003.
[27]Gonsalvez CJ, Polich J. P300 amplitude is determined by targettotarget interval[J]. Psychophysiology, 2002, 39(3): 388-396.
[28]Koivisto M, Revonsuo A. Comparison of eventrelated potentials in attentional blink and repetition blindness[J]. Brain Research, 2008, 1189: 115-126.
[29]Polprasert C, Kukieattikool P, Demeechai T, et al. New stimulation pattern design to improve P300-based matrix speller performance at high flash rate[J]. Journal of Neural Engineering, 2013, 10(3): 036012.
[30]Zhang Yu, Zhao Qibin, Jin Jing, et al. A novel BCI based on ERP components sensitive to configural processing of human faces[J]. Journal of Neural Engineering, 2012, 9(2): 026018.
[31]Jin Jing, Allison BZ, Sellers EW, et al. An adaptive P300\|based control system[J]. Journal of Neural Engineering, 2011, 8(3): 036006.
[32]Jin Jing, Daly I, Zhang Yu, et al. An optimized ERP braincomputer interface based on facial expression changes[J]. Journal of Neural Engineering, 2014, 11(3): 036004.
[33]Pires G, Nunes U, CasteloBranco M. Comparison of a rowcolumn speller vs. a novel lateral singlecharacter speller: assessment of BCI for severe motor disabled patients[J]. Clinical Neurophysiology, 2012, 123(6): 1168-1181.
[34]Townsend G, Shanahan J, Ryan DB, et al. A general P300 braincomputer interface presentation paradigm based on performance guided constraints[J]. Neuroscience Letters, 2012, 531(2): 63-68.
[35]Pan Jiahui, Li Yuanqing, Gu Zhenghui, et al. A comparison study of two P300 speller paradigms for braincomputer interface[J]. Cognitive Neurodynamics, 2013, 7(6): 523-529.
[36]Hong Bo, Guo Fei, Liu Tao, et al. N200\|speller using motiononset visual response[J]. Clinical Neurophysiology, 2009, 12(9): 1658-1666.
[37]Jin Jing, Allison BZ, Zhang Yu, et al. An ERPbased BCI using an oddball paradigm with different faces and reduced errors in critical functions[J]. Int J Neural Syst, 2014, 24(8): 1450027.
[38]Yeom SK, Fazli S, Muller KR, et al. An efficient ERPbased braincomputer interface using random set presentation and face familiarity[J]. Plos One, 2014, 9(11): e111157.[39]Chen Long, Jin Jing, Zhang Yu, et al. A survey of the dummy face and human face stimuli used in BCI paradigm[J]. J Neurosci Methods, 2015, 239: 18-27.
[40]Kaufmann T, Kubler A. Beyond maximum speeda novel twostimulus paradigm for braincomputer interfaces based on eventrelated potentials (P300\|BCI)[J]. Journal of Neural Engineering, 2014, 11(5): 056004.
[41]Jaeyoung P, KeeEung K. A POMDP approach to optimizing P300 speller BCI paradigm[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20(4): 584-594.
[42]Xu Yaming, Nakajima Y. A TwoLevel Predictive EventRelated PotentialBased BrainComputer Interface[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2839-2847.
[43]Rui M, Aghasadeghi N, Jarzebowski J, et al. A stochastic control approach to optimally designing hierarchical flash sets in P300 communication prostheses[J]. IEEE transactions on neural systems and rehabilitation engineering, 2012, 20(1): 102-112.
[44]Wang Minjue, Daly I, Allison BZ, et al. A new hybrid BCI paradigm based on P300 and SSVEP[J]. Journal of Neuroscience Methods, 2015, 244: 16-25.
[45]Xu Minpeng, Qi Hongzhi, Wan Baikun, et al. A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature[J]. Journal of Neural Engineering, 2013, 10(2): 026001.
[46]Xu Minpeng, Chen Long, Zhang Lixin, et al. A visual parallelBCI speller based on the timefrequency coding strategy[J]. J Neural Eng, 2014, 11(2): 026014.
[47]Jin Jing, Allison BZ, Wang Xingyu, et al. A combined braincomputer interface based on P300 potentials and motiononset visual evoked potentials[J]. Journal of Neuroscience Methods, 2012, 205(2): 265-276.
[48]Postelnicu CC, Talaba D. P300\|based brainneuronal computer interaction for spelling applications[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(2): 534-543.[49]Jong-Suk C, Jae Won B, Kang Ryoung P, et al. Enhanced perception of user intention by combining EEG and gazetracking for braincomputer interfaces (BCIs)[J]. Sensors, 2013, 13(3): 3454-3472.
[50]Allison BZ, Pineda JA. ERPs evoked by different matrix sizes: implications for a brain computer interface (BCI) system[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2): 110-113.
[51]Sellers EW, Krusienski DJ, McFarland DJ, et al. A P300 eventrelated potential braincomputer interface (BCI): The effects of matrix size and inter stimulus interval on performance[J]. Biol Psychol, 2006, 73(3): 242-252.
[52]Salvaris M, Sepulveda F. Visual modifications on the P300 speller BCI paradigm[J]. Journal of Neural Engineering, 2009, 6(4): 046011.
[53]Takano K, Komatsu T, Hata N, et al. Visual stimuli for the P300 braincomputer interface: a comparison of white/gray and green/blue flicker matrices[J]. Clinical Neurophysiology, 2009, 120(8): 1562-1566.
[54]Ikegami S, Takano K, Wada M, et al. Effect of the green/blue flicker matrix for P300-based braincomputer interface: an EEGfMRI study[J]. Frontiers in Neurology, 2012, 3: 113.
[55]Li Yueqing, Bahn S, Nam CS, et al. Effects of luminosity contrast and stimulus duration on user performance and preference in a P300-based braincomputer interface[J]. International Journal of HumanComputer Interaction, 2014, 30(2): 151-163.
[56]Citi L, Poli R, Cinel C. Documenting, modelling and exploiting P300 amplitude changes due to variable target delays in Donchin's speller[J]. Journal of Neural Engineering, 2010, 7(5): 056006.
[57]Lu J, Speier W, Hu Xiao, et al. The effects of stimulus timing features on P300 speller performance[J]. Clinical Neurophysiology, 2013, 124(2): 306-314.
[58]McFarland DJ, Sarnacki WA, Townsend G, et al. The P300-based braincomputer interface (BCI): effects of stimulus rate[J]. Clinical Neurophysiology, 2011, 122(4): 731-737.
[59]Geuze J, Farquhar JDR, Desain P. Dense codes at high speeds: varying stimulus properties to improve visual speller performance[J]. Journal of Neural Engineering, 2012, 9(1): 016009.
[60]Jin Jing, Allison BZ, Sellers EW, et al. Optimized stimulus presentation patterns for an eventrelated potential EEGbased braincomputer interface[J]. Med Biol Eng Comput, 2011, 49(2): 181-191.
[61]Zhou Zongtan, Yin Erwei, Liu Yang, et al. A novel taskoriented optimal design for P300-based braincomputer interfaces[J]. J Neural Eng, 2014, 11(5): 056003.
[62]Hill J, Farquhar J, Martens S, et al. Effects of stimulus type and of errorcorrecting code design on BCI speller performance[C] //Koller D, Schuurmans D, Bengio Y, Bottou L. Advances in Neural Information Processing Systems 21 (NIPS 2008). 2009:1-8.
[63]Guger C, Daban S, Sellers E, et al. How many people are able to control a P300-based braincomputer interface (BCI)?[J]. Neuroscience Letters, 2009, 462(1): 94-98.
[64]Fazel-Rezai R, Abhari K. A Comparison between a Matrixbased and a Regionbased P300 Speller Paradigms for BrainComputer Interface[C]//The 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. New York: IEEE, 2008: 1147-1150.
[65]Fazel-Rezai R, Gavett S, Ahmad W, et al. A comparison among several P300 braincomputer interface speller paradigms[J]. Clinical EEG and Neuroscience, 2011, 42(4): 209-213.
[66]Schaeff S, Treder MS, Venthur B, et al. Exploring motion VEPs for gazeindependent communication[J]. Journal of Neural Engineering, 2012, 9(4): 045006.
[67]Kaufmann T, Schulz SM, Koeblitz A, et al. Face stimuli effectively prevent braincomputer interface inefficiency in patients with neurodegenerative disease[J]. Clinical Neurophysiology, 2013, 124(5): 893-900.
[68]Kaufmann T, Schulz SM, Gruenzinger C, et al. Flashing characters with famous faces improves ERPbased braincomputer interface performance[J]. Journal of Neural Engineering, 2011, 8(5): 056016.
[69]许敏鹏, 张力新, 明东, 等. 基于SSVEP阻断与P300特征的混合范式脑-机接口[J]. 电子学报, 2013, 41(11): 2247-2251.
[70]Naito G, Yoshida L, Numata T, et al. Simultaneous Classification of Multiple Motor Imagery and P300 for Increase in Output Information of BrainComputer Interface[J]. Electronics and Communications in Japan, 2014, 98(1): 47-54.
[71]Wang Hongtao, Li Yuanqing, Long Jinyi, et al. An asynchronous wheelchair control by hybrid EEGEOG braincomputer interface[J]. Cogn Neurodyn, 2014, 8(5): 399-409.