网站首页            期刊简介             编委会             投稿指南             期刊订阅             下载中心             在线留言            联系我们             English
  2025年4月5日 星期六  
文章快速检索
中国生物医学工程学报
  论文 本期目录 | 过刊浏览 | 高级检索 |
基于脑电信号的睡眠分期算法研究
1 哈尔滨工业大学电气工程及自动化学院,哈尔滨 150001
2 海南合美医疗器械有限公司,海口 570125
3 哈尔滨医科大学附属第一医院,哈尔滨 150001
Study on Sleep Staging Algorithm Based on EEG Signals
1 School of Electrical Engineering and Automatic, Harbin Institute of Technology, Harbin 150001, China
2 Medical Devices Co. Ltd. Hainan HeMei, Haikou 570125, China
3 First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
全文: PDF (1811 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 睡眠质量与人类健康息息相关,准确的睡眠质量监测对于帮助人们改善睡眠质量能够起到有效的监督作用。以MIT-BIH多导睡眠数据库slp01、slp02和slp04等3个样本的脑电信号为分析对象,采用sym7小波对其进行7层分解以去除高频细节信号,得到较为纯净的脑电信号。然后通过非线性符号动力学分析,去趋势波动分析以及频谱分析,分别提取符号熵指数,去趋势波动指数以及δ频带能量比等3个参数,对每个样本采用Kennard-Stone方法按照4〖DK〗∶1的比例建立校正集样本和预测集样本,并结合最小二乘支持向量机分类器进行样本训练拟合与分类识别。结果表明,3个特征参数与睡眠状态具有高度相关性,相关系数绝对值均高于0.83,并且确定了符号熵参数的嵌入维数为4,延迟常数为1,去趋势波动指数的分段区间为30~500,平均的睡眠分期正确率可达92.87%,比基于复杂度、近似熵等算法的分类正确率提高约5%。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘志勇1 张宏民2 赵辉群2 朱政1 李竹琴3 孙金玮1*
关键词 脑电信号符号熵去趋势波动指数频带能量比支持向量机    
Abstract:The quality of sleep is closely related to the human life. Monitoring sleep quality accurately can play an effective role in helping people improve the quality of sleep. We chose the EEG and sleep state data of slp01, slp02 and slp04 samples of MIT-BIH Polysomnographic database as the analysis object, use the wavelet transform of ‘sym7’ with 7 layers decomposition to denoise the EEG signal, and extract the symbolic entropy, the detrended fluctuation index and the delta frequency band energy ratio through the nonlinear analysis of symbolic dynamics, detrended fluctuation analysis and spectrum analysis. Besides, the calibration samples and prediction samples of each sample were established according to the proportion of 4 to 1 by KennardStone method, and the sleep staging are realized by the least squares support vector machine (LS-SVM). Results demonstrated that the three parameters were highly correlated to the sleep state, and the correlation coefficients of them to the sleep state were higher than 083, the embedding dimension and time delay of the symbol entropy parameters are 4 and 1, and the interval of detrended fluctuation was 30-500, the mean of sleep staging accuracy reached 9287%. The accuracy improved about 5% compared to the complexity and approximate entropy algorithm.
Key wordsEEG    symbolic entropy    detrended fluctuation index    frequency band energy ratio    support vector machine
    
基金资助:哈尔滨工业大学理工医交叉学科基础研究培育计划( HIT.IBRSEM.2013005);海口市2013年科技计划项目(2013\|02)
引用本文:   
刘志勇张宏民赵辉群朱政李竹琴孙金玮1*. 基于脑电信号的睡眠分期算法研究[J]. 中国生物医学工程学报, 2015, 34(6): 693-700.
Liu ZhiyongZhang HongminZhao HuiqunZhu  ZhengLi ZhuqinSun Jinwei1*. Study on Sleep Staging Algorithm Based on EEG Signals. journal1, 2015, 34(6): 693-700.
链接本文:  
http://cjbme.csbme.org/CN/10.3969/j.issn.0258-8021.2015. 06.008     或     http://cjbme.csbme.org/CN/Y2015/V34/I6/693
版权所有 © 2015 《中国生物医学工程学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发