网站首页            期刊简介             编委会             投稿指南             期刊订阅             下载中心             在线留言            联系我们             English
  2025年4月27日 星期日  
文章快速检索
中国生物医学工程学报
  论文 本期目录 | 过刊浏览 | 高级检索 |
基于超像素和支持向量机的阴道细菌自动检测
1 深圳大学医学院生物医学工程系,广东省生物医学信息检测与超声成像重点实验室,广东 深圳 518060
2 深圳市第六人民医院,深圳大学附属南山医院,广东 深圳 518052
Automatic Detection of Vaginal Bacteria Based on Superpixel and Support Vector Machine
1 Department of Biomedical Engineering,School of Medicine, Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, Guangdong, China
2 Department of Laboratory, the Sixth People’s Hospital of Shenzhen, the Affiliated Hospital of Nanshan, Shenzhen University, Shenzhen 518052, Guangdong, China
全文: PDF (13294 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 阴道受到细菌感染引发的阴道炎疾病可能导致异位妊娠、不孕、急慢性盆腔炎等严重疾病,目前形态学人工观察是临床诊断该类疾病的主要方法,但容易引起误诊和漏诊。本研究提出一种基于超像素和支持向量机(SVM )的阴道细菌自动检测方法,对革兰染色的阴道细菌图像,采用简单线性迭代聚类(SLIC)方法计算超像素;对超像素区域计算形状特征、颜色特征和方向梯度直方图(HOG)特征;最后用SVM对超像素区域进行识别。在专业医生的指导下挑选了40幅正常图像和60幅有细菌性阴道病(BV)的图像进行实验,其中10幅正常图像和20幅有细菌性阴道病(BV)的图像用于训练分类器,剩下的70幅用于测试算法。实验结果表明,所提出的自动检测算法获得了8927%的细菌检出率,具有较大的临床应用价值。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
Song Youyi1Lei Baiying1 He Liang2
关键词 阴道细菌超像素支持向量机(SVM)方向梯度直方图(HOG)特征自动检测    
Abstract:The vaginal disorders or infections caused by bacteria may lead to serious diseases including ectopic pregnancy, infertility, acute or chronic pelvic inflammatory. In clinics, cytology screening is used to prevent vaginal disease; however, misdiagnosis and missed diagnosis occasionally occurred. Here we presented an algorithm for the automatic detection of vaginal bacteria based on the superpixel and support vector machine using images from Gram stain. The algorithm applied simple linear iterative clustering to compute superpixel. We characterized these superpixels areas using features of shape and color and histograms of oriented gradients, and then performed support vector machine classification.〓Fourty negative of BV and 60 indicative of BV images were chosen, one of 10 negative of BV and 20 indicative of BV images were used for training the classifier, the rest of the images for testing the algorithm. Results suggest that the proposed method reached the average ZSI of 8927%, showing promising potentials of clinical application.
Key wordsvaginal bacteria    superpixel    support vector machine (SVM)    histograms of oriented gradients(HOG)    automated detection
    
引用本文:   
Song Youyi1Lei Baiying1   He Liang2. 基于超像素和支持向量机的阴道细菌自动检测[J]. 中国生物医学工程学报, 2015, 34(2): 204-211.
链接本文:  
http://cjbme.csbme.org/CN/ 10.3969/j.issn.0258-8021. 2015. 02.011     或     http://cjbme.csbme.org/CN/Y2015/V34/I2/204
版权所有 © 2015 《中国生物医学工程学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发