Subcellular Spot Detection for Fluorescence Microscopic Images
1 Zhejiang Provincial Key Laboratory of CardioCerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
2 Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
3 State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
Abstract:Quantitative analysis of high throughput fluorescence microscopic image is a powerful tool to study dynamic processes in living cells. Many subcellular objects of interest appear as diffraction-limited spots in the image. The limitations of imaging conditions often lead to fluorescence microscopic images inhomogeneous and lower signal-to-noise ratio (SNR), making manual analysis a very challenging task. Designing the automatic subcellular spot detection method is a prerequisite for high throughput fluorescence microscopic image processing. This review presented a detailed overview of recent advances in the key techniques of spot detection method, including noise reduction, signal enhancement and signal thresholding. The bottlenecks and common difficulties of the algorithm design were discussed on the basis of summarizing advantages and disadvantages of the exiting spot detection methods. At the same time, the prospect of the related research was discussed.
[1]LippincottSchwartz J, Patterson GH. Development and use of fluorescent protein markers in living cells [J]. Science, 2003, 300(5616): 87-91.
[2]Miyawaki A, Sawano A, Kogure T. Lighting up cells: Labelling proteins with fluorophores [J]. Nature Cell Biology, 2003, 5(Suppl): 1-7.
[3]Stephens DJ, Allan VJ. Light microscopy techniques for live cell imaging [J]. Science, 2003, 300(5616): 82-86.
[4]Tsien RY. Imagining imaging’s future [J]. Nature Cell Biology, 2003, 5(Suppl): 16-21.
[5]Pepperkok R, Ellenberg J. High throughput fluorescence microscopy for systems biology [J]. Nature Reviews Molecular Cell Biology, 2006, 7(9): 690-696.
[6]Vonesch C, Aguet F, Vonesch JL, et al. The colored revolution of bioimaging [J]. IEEE Signal Processing Magazine, 2006, 23(3): 20-31.
[7]Eils R, Athale C. Computational imaging in cell biology [J]. The Journal of Cell Biology, 2003, 161(3): 477-481.
[8]Zhou X, Wong STC. Informatics challenges of high throughput microscopy [J]. IEEE Signal Processing Magazine, 2006, 23(3): 63-72.
[9]Shorte SL, Frischknecht F. Imaging Cellular and Molecular Biological Functions [M]. Berlin: SpringerVerlag, 2007: 45-70.
[10]Ahmed WM, Leavesley SJ, Rajwa B, et al. State of the art in information extraction and quantitative analysis for multimodality biomolecular imaging [J]. Proceedings of the IEEE, 2008, 96(3): 512-531.
[11]Wu Q, Merchant FA, Castleman KR. Microscope Image Processing [M]. Burlington: Elsevier, 2008: 247-297.
[12]Drubin DA, Garakani AM, Silver PA. Motion as a phenotype: The use of livecell imaging and machine visual screening to characterize transcription dependent chromosome dynamics [J/OL]. BMC Cell Biology, 2006, 7(19). http://www.biomedcentral.com/14712121/7/19, 20060424/20120718.
[13]Neumann B, Held M, Liebel U, et al. High throughput RNAi screening by timelapse imaging of live human cells [J]. Nature Methods, 2006, 3(5): 385-390.
[14]Sacher R, Stergiou L, Pelkmans L. Lessons from genetics: interpreting complex phenotypes in RNAi screens [J]. Current Opinion Cell Biology, 2008, 20(4): 483-489.
[15]Khodade P, Malhotra S, Kumar N, et al. Cytoview: development of a cell modelling framework [J]. Journal of Bioscience, 2007, 32(5): 965-977.
[16]Jaqaman K, Loerke D, Mettlen M, et al. Robust singleparticle tracking in livecell timelapse sequences [J]. Nature Methods, 2008, 5(8): 695-702.
[17]Sbalzarini IF, Koumoutsakos P. Feature point tracking and trajectory analysis for video imaging in cell biology [J]. Journal of Structure Biology, 2005, 151(2):182-195.
[18]Smal I, Meijering E, Draegestein K, et al. Multiple object tracking in molecular bioimaging by raoblackwellized marginal particle filtering [J]. Medical Image Analysis, 2008, 12(6): 764-777.
[19]Dorn JF, Danuser G, Ge Y. Computational processing and analysis of dynamic fluorescence image data [J]. Methods in Cell Biology, 2008, 25: 497-538.
[20]Gerlich D, Ellenberg J. 4D imaging to assay complex dynamics in live specimens [J]. Nature Cell Biology, 2003, 5(Suppl):14-19.
[21]Meijering E, Smal I, Danuser G. Tracking in molecular bioimaging [J]. IEEE Signal Processing Magazine, 2006, 23(3): 46-53.
[22]Stevens JK, Mills LR, Trogadis JE. Three Dimensional Confocal Microscopy: Volume Investigation of Biological Specimens [M]. London: Academic Press, 1994:47-93.
[23]Zhang B, Zerubia J, OlivoMarin JC. Gaussian approximations of fluorescence microscope point spread function models [J]. Applied Optics, 2007, 46(10): 1819-1829.
[24]Thomann D, Rines DR, Sorger PK, et al. Automatic fluorescent tag detection in 3D with superresolution: Application to the analysis of chromosome movement [J]. Journal of Microscopy, 2002, 208(1): 49-64.
[25]Romeny THBM. FrontEnd Vision and MultiScale Image Analysis [M]. Berlin: Springer, 2003: 277-284.
[26]Turin GL. An introduction to matched filters [J]. IRE Transactions on Information Theory, 1960, 6(3): 311-329.
[27]OlivoMarin JC. Extraction of spots in biological images using multiscale products [J]. Pattern Recognition, 2002, 35(9): 1989-1996.
[28]Boulanger J, Kervrann C, Bouthemy P. Patchbased nonlocal functional for denoising fluorescence microscopy image sequences [J]. IEEE Transactions on Medical Imaging, 2010, 29(2): 442-454.
[29]Zhang B, Fadili J, Starck JL. Multiscale variancestabilizing transform for mixedPoissonGaussian processes and its applications in bioimaging [C]. Proceedings of IEEE International Conference on Image Processing. San Antonio: IEEE, 2007, 6(Ⅵ): 233-236.
[30]Kimori Y, Baba N, Morone N. Extended morphological processing: a practical method for automatic spot detection of biological markers from microscopic images [J/OL]. BMC Bioinformatics, 2010, 11(373). http://www.biomedcentral.com/14712105/11/373,20100708/20120718.
[31]Rohr K, Godinez WJ, Harder N, et al. Tracking and quantitative analysis of dynamic movements of cells and particles [J/OL]. Cold Spring Harb Protocols, 2010, 6: 116. http://cshprotocols.cshlp.org/content/2010/6/pdb.top80.full, 20100601/20120718.
[32]Sage D, Neumann FR, Hediger F, et al. Automatic tracking of individual fluorescence particles: Application to the study of chromosome dynamics [J]. IEEE Transactions on Image Processing, 2005, 14(9): 1372-1383.
[33]Crocker JC, Grier DG. Methods of digital video microscopy for colloidal studies [J]. Journal of colloid and interface science, 1996, 179: 298-310.
[34]Soille P. Morphological Image Analysis: Principles and Applications [M]. Berlin: Springer Verlag, 2003: 121-127.
[35]Zhang B, Fadili J, Starck J. Wavelets, ridgelets, and curvelets for Poisson noise removal [J]. IEEE Transactions on Image Processing, 2008, 17(7): 93-108.
[36]Ruusuvuori P, ij T, Chowdhury S, et al. Evaluation of methods for detection of fluorescence labeled subcellular objects in microscope images [J/OL]. BMC Bioinformatics, 2010, 11(248). http://www.biomedcentral.com/14712105/11/248, 20100513/20120718.
[37]Jiang S, Zhou X, Kirchhausen T, et al. Detection of molecular particles in live cells via machine learning [J]. Cytometry A, 2007, 71(8): 563-575.
[38]Mclachlan GJ. Discriminant Analysis and Statistical Pattern Recognition [M]. New York: Wiley, 2004: 129-336.
[39]Fawcett T. An introduction to ROC analysis [J]. Pattern Recognition Letters, 2006, 27:861-874.
[40]Popovic A, De La Fuente M, Engelhardt M, et al. Statistical validation metric for accuracy assessment in medical image segmentation [J]. International Journal of Computer Assisted Radiology and Surgery, 2007, 2:169-181.
[41]Swets JA. Measuring the accuracy of diagnostic systems [J]. Science, 1988, 240:1285-1293.
[42]Smal I, Loog M, Niessen W, et al. Quantitative comparison of spot detection methods in fluorescence microscopy [J]. IEEE Transactions on Medical Imaging, 2010, 29(2): 282-301.
[43]Hell SW, Dyba M, Jakobs S. Concepts for nanoscale resolution in fluorescence microscopy [J]. Current Opinion in Neurobiology, 2004, 14(5): 599-609.
[44]Garini Y, Vermolen BJ, Young IT. From micro to nano: Recent advances in highresolution microscopy [J]. Current Opinion in Neurobiology, 2005, 16(1): 3-12.
[45]Ruusuvuori P, Lehmussola A, Selinummi J, et al. Benchmark set of synthetic images for validating cell image analysis algorithms [C]//Proceedings of the 16th European Signal Processing Conference. Lausanne: EUSIPCO, 2008: 1569105508.
[46]Broad bioimage benchmark collection [DB/OL]. http://www.broad.mit.edu/bbbc, 2012-0521/20120718.
[47]Gelasca ED, Byun J, Obara B, et al. Evaluation and benchmark for biological image segmentation [C]//Proceedings of IEEE International Conference on Image Processing. San Diego: IEEE, 2008: 1816-1819.