网站首页            期刊简介             编委会             投稿指南             期刊订阅             下载中心             在线留言            联系我们             English
  2025年5月13日 星期二  
文章快速检索
中国生物医学工程学报  2025, Vol. 44 Issue (1): 34-42    DOI: 10.3969/j.issn.0258-8021.2025.01.004
  论著 本期目录 | 过刊浏览 | 高级检索 |
基于深度卷积和多层尺度特征融合的冠脉造影图像血管分割
许洋1,2,3, 翟楠楠1,2,3, 倪维臻1,2,3, 谭强4, 王金甲1,2,3*
1(燕山大学信息科学与工程学院,河北 秦皇岛 066000)
2(智能机器人湖北省重点实验室(武汉工程大学),武汉 430205)
3(长三角哈特机器人产业技术研究院,安徽 芜湖 241000)
4(秦皇岛市第一医院心内科,河北 秦皇岛 066000)
Vessel Segmentation in Coronary Angiography Images Based on Deep Convolution and Multi-Level Scale Feature Fusion
Xu Yang1,2,3, Zhai Nannan1,2,3, Ni Weizhen1,2,3, Tan Qiang4, Wang Jinjia1,2,3*
1(College of Information Science and Engineering, Yanshan University, Qinhuangdao 066000, Hebei, China)
2(Hubei Key Laboratory of Intelligent Robot (Wuhan Institute of Technology), Wuhan 430205, China)
3(Yangtze River Delta HIT Robot Technology Research Institute, Wuhu 241000, Anhui, China)
4(Department of Cardiology, The First Hospital of Qinhuangdao, Qinhuangdao 066002, Hebei, China)
全文: PDF (7449 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 冠状动脉造影是诊疗冠心病等心血管疾病的一种重要手段,快速而准确的血管分割对诊疗心血管疾病具有十分重要的意义。针对现有冠状动脉造影血管分割算法对细微血管的分割能力不强、分割血管的连通性较差、抗噪声及伪影能力弱等问题,本研究吸取了Transformer结构长距离依赖与跨域跳转连接的优点,分别采用上下文分层聚合和多尺度特征融合的方法,对U型分割网络进行改进,称HAM-UNet。首先,采取必要的图像预处理方法,对原有的冠脉造影图像进行一些特征强化,并扩大了实验数据;然后,将预处理好的图片以HAM-UNet的方法进行分割。编码器同时结合深度卷积与残差结构,可以高效的捕获全局特征并有效增强网络细节感知力,提升分割精度的同时提高分割连通性。解码器进行了多尺度的特征融合,并且加入上采样跳转连接,网络的全局感知得到提高,有效降低了无关信息的影响。所使用数据集来自于天津市医科大学总医院的221张图像和秦皇岛市第一医院的494张图像,在两个数据集上,HAM-UNet算法的准确率分别为0.983和0.998,IOU分别为0.857和0.908,Dice分数分别为0.842和0.883;综合分割性能比 U-Net和Att-UNet 等算法有较大提升。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
许洋
翟楠楠
倪维臻
谭强
王金甲
关键词 图像分割冠脉造影图像分割U-Net深度卷积多层尺度融合    
Abstract:Coronary angiography is a significant diagnostic and therapeutic modality for coronary heart disease and other cardiovascular diseases. The accurate and expeditious segmentation of blood vessels is of paramount importance to the diagnosis and treatment of cardiovascular diseases. Existing coronary angiography vessel segmentation algorithms have been shown to have several shortcomings, including a weak segmentation ability for fine vessels, poor connectivity of segmented vessels, and a lack of resistance to noise and artefacts. This study proposes an enhanced U-shape segmentation network, termed HAM-UNet.UNet, which utilises the advantages of the Transformer structure′s long-distance dependence and cross-domain hopping connectivity. The proposed methods include contextual hierarchical aggregation and multiscale feature fusion. Firstly, a series of image preprocessing methods are employed to enhance certain features of the original coronary angiography images and expand the experimental data. Then, the preprocessed images are segmented by the HAM-UNet method.The encoder combines both deep convolution and residual structure, which can efficiently capture global features and effectively enhance the network detail perception, thus improving the segmentation accuracy while increasing the segmentation connectivity. The decoder performs multi-scale feature fusion and up-sampling hopping connections, improving the global perception of the network and reducing the influence of irrelevant information.The datasets used are from 221 images from the General Hospital of Tianjin Medical University and 494 images from the First Hospital of Qinhuangdao City. On both datasets, the HAM-UNet algorithm achieves an accuracy of 0.983 and 0.998, respectively. As demonstrated in Figure 8, the IOUs are 0.857 and 0.908, and the Dice scores are 0.842 and 0.883, respectively. This indicates that the overall segmentation performance is superior to that of U-Net, Att-UNet and other algorithms.
Key wordsimage segmentation    coronary angiography image segmentation    U-Net    deep convolution    multi-scale fusion
收稿日期: 2024-05-17     
PACS:  R318  
基金资助:安徽省机器视觉检测与感知重点实验室开放基金(KLMVI-2023-HIT-13);智能机器人湖北省重点实验室开放基金(HBIR202208); 燕山大学秦皇岛市第一医院医工交叉特色专项培育项目(2022-09).
通讯作者: *E-mail:wjj@ysu.edu.cn   
引用本文:   
许洋, 翟楠楠, 倪维臻, 谭强, 王金甲. 基于深度卷积和多层尺度特征融合的冠脉造影图像血管分割[J]. 中国生物医学工程学报, 2025, 44(1): 34-42.
Xu Yang, Zhai Nannan, Ni Weizhen, Tan Qiang, Wang Jinjia. Vessel Segmentation in Coronary Angiography Images Based on Deep Convolution and Multi-Level Scale Feature Fusion. Chinese Journal of Biomedical Engineering, 2025, 44(1): 34-42.
链接本文:  
http://cjbme.csbme.org/CN/10.3969/j.issn.0258-8021.2025.01.004     或     http://cjbme.csbme.org/CN/Y2025/V44/I1/34
版权所有 © 2015 《中国生物医学工程学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发