Research Progress on Synthesis Methods of Gold Nanomaterials and its Applications in BiomedicalFields
Zheng Zuojing1, Lin Yuhong2, Zhao Kai1,2*
1(College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China) 2(Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou 318000, Zhejiang, China)
Abstract:Nanotechnology has become a trend in scientific fields, and various metal nanomaterials have been widely developed in various biomedical aspects. Among them, gold nanomaterials have received special attentions due to their good biocompatibility, unique optical properties and easy to be functionalized. Nevertheless, preparations of gold nanomaterials by chemical, physical and microbial approaches suffer from environmental, economic and operational drawbacks, which limit the wide applications in industry and medicine. With the development of green synthesis and biomass synthesis, plant-mediated biosynthesis of metal nanomaterials has the advantages of non-pollution and non-toxicity, which can minimize the amount of hazardous chemicals and toxic by-products. This article reviewed the research progress of different preparation methods of gold nanomaterials and their applications in the fields of drug delivery, tumor therapy, antimicrobial, biosensing and imaging, providing references for the development research of more versatile gold nanomaterials.
郑祚静, 林玉红, 赵凯. 金纳米材料的合成方法及其在生物医学领域应用研究进展[J]. 中国生物医学工程学报, 2024, 43(6): 730-740.
Zheng Zuojing, Lin Yuhong, Zhao Kai. Research Progress on Synthesis Methods of Gold Nanomaterials and its Applications in BiomedicalFields. Chinese Journal of Biomedical Engineering, 2024, 43(6): 730-740.
[1] Tarantino S, Caricato AP, Rinaldi R, et al. Cancer treatment using different shapes of gold-based nanomaterials in combination with conventional physical techniques [J]. Pharmaceutics, 2023, 15 (2): 500. [2] Ranjana R, Parushuram N, Harisha KS, et al. Silk fibroin a bio-tyemplate for synthesis of different shaped gold nanoparticles: characterization and ammonia detection application [J]. Mater Today Proc, 2020, 27 (1): 434-439. [3] 陈祥亭, 李忠. 金纳米材料的合成方法进展 [J]. 山东化工, 2021, 50(16): 100-116. [4] Mikhailova EO. Gold Nanoparticles: biosynthesis and potential of biomedical application [J]. J Funct Biomater, 2021, 12 (4): 70. [5] Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. Gold nanoparticles in cancer treatment [J]. Mol Pharm, 2019, 16 (1): 1-23. [6] Ahmad S, Ahmad S, Ali S, et al. Recent advancements and unexplored biomedical applications of green synthesized Ag and Au nanoparticles: a review [J]. Int J Nanomedicine, 2024, 19: 3187-3215. [7] 刘美辰, 梁爽, 刘永军, 等. 金纳米片在肿瘤治疗和诊断中的应用 [J]. 中国药科大学学报, 2022, 53(1): 99-104. [8] 曹小卫, 陈帅, 鲍敏,等. 金纳米星的制备、表面修饰及其在生物医学领域的应用研究 [J]. 化学进展, 2018, 30(9): 1380-1391. [9] Hu Xiaopei, Zhang Yuting, Ding Tingting, et al. Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities [J]. Front Bioeng Biotechnol, 2020, 13(8): 990. [10] Vinod M, Jayasree RS, Gopchandran KG. Synthesis of pure and biocompatible gold nanoparticles using laser ablation method for SERS and photothermal applications [J]. Curr Appl Phys, 2017, 17(11): 1430-1438. [11] Riedel R, Mahr N, Yao C, et al. Synthesis of gold-silica core-shell nanoparticles by pulsed laser ablation in liquid and their physico-chemical properties towards photothermal cancer therapy [J]. Nanoscale, 2020, 12 (5): 3007-3018. [12] BKVA , ATA. Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications [J]. J Environ Chem Eng, 2017, 5(5): 4866-4883. [13] Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold [J]. Discuss Faraday Soc, 1951, 11:9511100055. [14] 任林娇, 李晨龙, 秦自瑞, 等. 柠檬酸钠还原法制备金纳米颗粒的影响因素分析 [J]. 功能材料, 2021, 52(2): 2211-2215. [15] Ji Bin, Wei MinJie, Yang Bin. Recent advances in nanomedicines for photodynamic therapy (pdt)-driven cancer immunotherapy [J]. Theranostics, 2022, 12 (1): 434-458. [16] 杨玉新, 叶阳, 周有祥, 等. 四种化学还原法制备胶体金的比较研究 [J]. 湖北农业科学, 2011, 50(3): 476-478,482. [17] 刘海雄, 梁振兴, 孙为正. 基于不同化学还原法制备的Au/XC-72及其对L-CySH的催化氧化反应研究 [J]. 现代食品科技, 2019, 35(5): 144-150. [18] 吴睿, 季晓晖, 刘存芳, 等. 纳米金的合成方法研究进展 [J]. 化学研究与应用, 2022, 34(5): 952-958. [19] 唐艳涛, 魏静静, 荣潇雅. 金纳米粒子的应用研究进展 [J]. 辽宁化工, 2020, 49(10): 1256-1260. [20] Chang SS, Shih CW, Chen CD, et al. The shape transition of gold nanorods [J]. Langmuir, 1998, 15(3): 701-709. [21] 吴宝艳, 薛永永, 侯识华. 电化学法制备还原氧化石墨烯/聚吡咯/纳米金复合电极材料[C]//国家自然科学基金委员会, 中国化学会. 中国化学会第十三届全国分析化学年会论文集(一). 西安: 中国化学会, 2018: 322. [22] Jana NR, Gearheart L, Murphy CJ. Seeding growth for size control of 5-40 nm diameter gold nanoparticles [J]. Langmuir, 2001, 17(22). [23] Mat'átková O, Michailidu J, Miškovská A, et al. Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods [J]. Biotechnol Adv, 2022, 58: 107905. [24] Nikhil R, Jana. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods [J]. J Phys Chem B, 2001, 105(19): 4065-4067. [25] Bastús NG, Comenge J, Puntes V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200nm: size focusing versus ostwald ripening [J]. Langmuir, 2011, 27(17): 11098-11105. [26] Gour A, Jain NK. Advances in green synthesis of nanoparticles [J]. Artif Cells Nanomed Biotechnol, 2019, 47 (1): 844-851. [27] Khan SA, Lee CS. Green biological synthesis of nanoparticles and their biomedical applications [J]. Appl Nanotechnol, 2020: 247-280. [28] Bahrulolum H, Nooraei S, Javanshir N, et al. Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector [J]. J Nanobiotechnology, 2021, 19(1): 86. [29] Emami F, Banstola A, Vatanara A, et al. Doxorubicin and anti-PD-L1 antibody conjugated gold nanoparticles for colorectal cancer photochemotherapy [J]. Mol Pharm, 2019, 16 (3): 1184-1199. [30] Husseiny MI, El-Aziz MA, Badr Y, et al. Biosynthesis of gold nanoparticles using pseudomonas aeruginosa [J]. Spectrochim ACTAA. 2007, 67 (3-4): 1003-1006. [31] Kalimuthu K, Cha BS, Kim S, et al. Eco-friendly synthesis and biomedical applications of gold nanoparticles: a review [J]. Microchem J, 2020, 152: 104296. [32] Vijayaraghavan K, Ashokkumar T. Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications [J]. J Environ Chem Eng, 2017, 5 (5): 4866-4883. [33] Ahmed AA, Hamzah H, Maaroof M. Analyzing formation of silver nanoparticles from the filamentous fungus fusarium oxysporum and their antimicrobial activity [J]. Turk J Biol, 2018, 42 (1): 54-62. [34] Qiao Lei, Dou Xina, Song Xiaofan, et al. Green synthesis of nanoparticles by probiotics and their application [J]. Adv Appl Microbiol, 2022, 119: 83-128. [35] Younis NS, Bakir EM, Mohamed ME, et al. Cyanobacteria as nanogold factories II: chemical reactivity and anti-myocardial infraction properties of customized gold nanoparticles biosynthesized by cyanothece SP [J]. Mar Drugs, 2019, 17 (7): 1-16. [36] Rafique M, Sadaf I, Rafique MS, et al. A review on green synthesis of silver nanoparticles and their applications [J]. Artif Cells Nanomed Biotechnol, 2017 , 45(7): 1272-1291. [37] Santhoshkumar J, Rajeshkumar S, Venkat Kumar S, Phyto-assisted synthesis, characterization and applications of gold nanoparticles: a review[J]. Biochem Biophys Rep, 2017, 11: 46-57. [38] Sengani M, Grumezescu AM, Rajeswari VD. Recent trends and methodologies in gold nanoparticle synthesis: a prospective review on drug delivery aspect [J]. OpenNano, 2017, 2: 37-46. [39] Basavegowda N, Idhayadhulla A, Lee YR. Phyto-synthesis of gold nanoparticles using fruit extract of hovenia dulcis and their biological activities [J]. Ind Crops Products, 2014, 52: 745-751. [40] Wang Mincong, Meng Yue , Zhu Huifeng, et al. Green synthesized gold nanoparticles using viola betonicifolia leaves extract: characterization, antimicrobial , antioxidant, and cytobiocompatible activities [J]. Int J Nanomedicine, 2021, 16: 7319-7337. [41] Vimalraj S, Ashokkumar T, Saravanan S. Biogenic Gold nanoparticles synthesis mediated by mangifera indica seed aqueous extracts exhibits antibacterial, anticancer and anti-angiogenic properties [J]. Biomed pharmacother, 2018, 105: 440-448. [42] Leng W, Pati P, Vikesland PJ. Room temperature seed mediated growth of gold nanoparticles: mechanistic investigations and life cycle assesment [J]. Environ Sci-Nano, 2015, 2 (5): 440-453. [43] Andalibi MR, Wokaun A, Bowen P, et al. Kinetics and mechanism of metal nanoparticle growth via optical extinction spectroscopy and computational modeling: the curious case of colloidal gold [J]. ACS Nano, 2019, 13(10):11510-11521. [44] Minati L, Benetti F, Chiappini A, et al. One-step synthesis of star-shaped gold nanoparticles [J]. Colloids Surf A Physicochem Eng Asp, 2014, 441, 623-628. [45] Bharadwaj KK, Rabha B, Pati S, Sarkar T, et al. Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics [J]. Molecules, 2021, 26(21): 6389. [46] Fan M, Han Y, Gao S, et al. Ultrasmall gold nanoparticles in cancer diagnosis and therapy [J]. Theranostics, 2020, 10(11): 4944-4957. [47] Zheng K, Setyawati MI, Leong DT, et al. Antibacterial metal nanoclusters [J]. ACS Nano, 2017, 11(7): 6904-6910. [48] Khan T, Ullah N, Khan MA, et al. Plant-based gold nanoparticles; a comprehensive review of the decade-long research on synthesis, mechanistic aspects and diverse applications [J]. Adv Colloid Interface Sci, 2019, 272: 102017. [49] Tsai CY, Lu SL, Hu CW, et al. Size-dependent attenuation of TLR9 signaling by gold nanoparticles in macrophages [J]. J Immunol, 2012, 188: 68-76. [50] Saw WS, Ujihara M, Chong WY, et al. Size-dependent effect of cystine/citric acid-capped confeito-like gold nanoparticles on cellular uptake and photothermal cancer therapy [J]. Colloids Surf B Biointerfaces, 2018, 161: 365-374. [51] Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: a review[J]. Talanta, 2018, 184: 537-556. [52] Pratiwi FW, Kuo CW, Chen BC, et al. Recent advances in the use of fluorescent nanoparticles for bioimaging [J]. Nanomedicine (Lond), 2019, 14 (13): 1759-1769. [53] 王琪, 王欣. 基于纳米金比色法可视化检测鸡蛋中的氟苯尼考 [J]. 食品与发酵工业, 2022, 48(02): 238-247. [54] 侯东军, 韩合敬, 郝智慧, 等. 纳米金比色传感器检测食品中的沙门氏菌 [J]. 黑龙江畜牧兽医, 2016, (7): 273-275+291. [55] Chen Jianming, Fan Taojian, Xie Zhongjian, et al. Advances in nanomaterials for photodynamic therapy applications: status and challenges [J]. Biomaterials, 2020, 237: 119827. [56] Bansal SA, Kumar V, Karimi J, et al. Role of gold nanoparticles in advanced biomedical applications [J]. Nanoscale Adv, 2020, 2 (9): 3764-3787. [57] 温聪颖, 李想, 张瑞巧, 等. 纳米金比色法检测乙肝病毒核酸综合性实验 [J]. 实验室研究与探索, 2022, 41(6): 6-10,15. [58] Hong D, Kim K, Jo EJ, et al. Electrochemiluminescence-incorporated lateral flow immunosensors usingRu(bpy)2+3-labeled gold nanoparticles for the full-range detection of physiological c-reactive protein levels [J]. Anal Chem, 2021, 93(22): 7925-7932. [59] Dong YC, Hajfathalian M, Maidment PSN, et al. Effect of gold nanoparticle size on their properties as contrast agents for computed tomography [J]. Sci Rep, 2019, 9 (1): 1-13. [60] Hajfathalian M, Amirshaghaghi A, Naha PC, et al. Wulff in a cage gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging [J]. Nanoscale, 2018, 10 (39): 18749-18757. [61] Khademi S, Sarkar S, Kharrazi S, et al. Evaluation of size, morphology, concentration, and surface effect of gold nanoparticles on X-Ray attenuation in computed tomography [J]. Phys Medica, 2018: 127-133. [62] Dou Yan, Guo YanYan, Li XiaoDong, et al. Size-tuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy [J]. ACS Nano, 2016, 10 (2): 2536-2548. [63] Ross RD, Cole LE, Tilley JMR, et al. Effects of functionalized gold nanoparticle size on X-Ray attenuation and substrate binding affinity [J]. Chem Mater, 2014, 26 (2): 1187-1194. [64] Chinen AB, Guan CM, Ferrer JR, et al. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence [J]. Chem Rev, 2015, 115 (19): 10530-10574. [65] Jahangirian H, KK, Izadiyan Z, et al. A review of small molecules and drug delivery applications using gold and iron nanoparticles [J]. Int J nanomed, 2019, 14: 1633-1657. [66] Ko WC, Wang SJ, Hsiao CY, et al. Pharmacological role of functionalized gold nanoparticles in disease applications [J]. Molecules, 2022, 27 (5): 1-12. [67] Vemuri SK, Banala RR, Mukherjee S, et al. Novel biosynthesized gold nanoparticles as anti-cancer agents against breast cancer: synthesis, biological evaluation, molecular modelling studies [J]. Mater Sci Eng C Mater Biol Appl, 2019, 99: 417-429. [68] Gossai NP, Naumann JA, Li NS, et al. Drug conjugated nanoparticles activated by cancer cell specific mRNA [J]. Oncotarget, 2016, 7(25): 38243-38256. [69] Amreddy N, Babu A, Muralidharan R, et al. Recent advances in nanoparticle-based cancer drug and gene delivery [J], Adv Cancer Res, 2018, 137: 115-170. [70] Fakhri S, Moradi SZ, Faraji F, et al. Current advances in nanoformulations of therapeutic agents targeting tumor microenvironment to overcome drug resistance [J]. Cancer Metastasis Rev, 2023, 42(3): 959-1020. [71] Ashokkumar T, Prabhu D, Geetha R, et al. Apoptosis in liver cancer (HepG2) cells induced by functionalized gold nanoparticles [J]. Colloid Surface B, 2014, 123: 549-556. [72] 谷伟, 张锦岚, 彭亮, 等. 不同尺寸、形状和组成的金纳米颗粒的光热特性: 在癌症治疗中的应用(英文)[J]. 红外与激光工程, 2018, 47: 386-394. [73] Jiang Xueqin , Liu Renming , Tang Peijun, et al. Controllably tuning the near-infrared plasmonic modes of gold nanoplates for enhanced optical coherence imaging and photothermal therapy [J]. Rsc Adv, 2015, 5: 80709-80718. [74] Xu Weijun, Qian Junmin, Hou Guanghui, et al. Hyaluronic acid-functionalized gold nanorods with pH/NIR dual-responsive drug release for synergetic targeted photothermal chemotherapy of breast cancer [J]. ACS Appl Mater Inter, 2017, 9(42): 36533-36547. [75] Zhang Ziyi, Ni Dalong, Wang Fei, et al.In vitro study of enhanced photodynamic cancer cell killing effect by nanometer-thick gold nanosheets [J]. Nano Res, 2020, 13: 3217-3223. [76] Zhang Yumin, Yang Lijun, Yang Cuihong, et al. Recent advances of smart acid-responsive gold nanoparticles in tumor therapy [J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2020, 12 (4): 1-16. [77] Zhang Xiaodong, Wu Di, Shen Xiu, et al. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy [J]. Biomaterials, 2012, 33: 6408-6419. [78] Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice [J]. Phys Med Biol, 2004, 49: N309-N315. [79] Zhao Xiaohui, Tang Hao, Jiang Xingyu. Deploying gold nanomaterials in combating multi-drug-resistant bacteria [J]. ACS Nano, 2022, 16 (7): 10066-10087. [80] Baranwal A, Srivastava A, Kumar P, et al. Prospects of nanostructure materials and their composites as antimicrobial agents [J]. Front Microbiol, 2018, 9: 422. [81] Sibuyi NRS, Moabelo KL, Fadaka AO, et al. Multifunctional gold nanoparticles for improved diagnostic and therapeutic applications: a review [J]. Nanoscale Res Lett, 2021, 16(1): 174. [82] Li Xiaomin, Hu Zhenpeng, Ma Jinlong, et al. The systematic evaluation of size-dependent toxicity and multi-time biodistribution of gold nanoparticles [J]. Colloid Surface B, 2018, 167: 260-266. [83] 褚光宇, 陈云丰. 纳米金抗菌机制及应用研究进展 [J]. 上海交通大学学报(医学版), 2018, 38: 1386-1390. [84] Fanoro OT, Oluwafemi OS. Bactericidal antibacterial mechanism of plant synthesized silver, gold and bimetallic nanoparticles [J]. Pharmaceutics, 2020, 12 (11): 1-20. [85] Nagalingam M, Kalpana VN, Devi Rajeswari V, et al. Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible gold nanoparticles from Alternanthera Bettzickiana [J]. Biotechnol Rep, 2018, 19: e00268. [86] Zhou Y, Sun H, Xu H, et al. Mesoporous encapsulated chiral nanogold for use in enantioselective reactions [J]. Angew Chem Int Ed Engl, 2018, 57(51): 16791-16795. [87] Kuah E, Toh S, Yee J, et al. Enzyme mimics: advances and applications [J]. Chemistry, 2016, 22 (25): 8404-8430. [88] Lee J, Park JC, Song H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol [J]. Adv Mater, 2008, 20(8): 1523-1528. [89] Fan Kelong, Wang Hui, Xi Juqun, et al., Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site[J], Chem Commun, 2017, 53 (2): 424-427. [90] Naseer F, Ahmed M. Green nanoparticles as multifunctional nanomedicines: insights into anti-inflammatory effects, growth signaling and apoptosis mechanism in cancer [J]. Semin Cancer Biol, 2022, 86: 310-324. [91] Muddapur UM, Alshehri S, Ghoneim MM, et al. Plant-based synthesis of gold nanoparticles and theranostic applications: a review [J]. Molecules, 2022, 27: 1391. [92] 赵陈泷, 沈倩, 黄众熙, 等. 金纳米粒子的表面修饰及生物应用进展 [J]. 化学通报, 2024, 87: 642-651. [93] Qiu J, Liu Y, Xia Y. Radiolabeling of gold nanocages for potential applications in tracking, diagnosis, and image-guided therapy [J]. Adv Healthc Mater, 2021, 10: e2002031. [94] Gupta N, Malviya R. Understanding and advancement in gold nanoparticle targeted photothermal therapy of cancer [J]. Biochim Biophys Acta Rev Cancer, 2021, 1875: 188532. [95] 葛浩英, 杜健军, 龙飒然, 等. 功能化金纳米材料在肿瘤诊疗中的研究与应用 [J]. 高等学校化学学报, 2021, 42: 1202-1212. [96] Chiang MC, Yang YP, Nicol CJB, et al. Gold nanoparticles in neurological diseases: a review of neuroprotection [J]. Int J Mol Sci, 2024, 25: 2360.