|
|
Progress on Applications of Poly(Vinyl Amine) and its Derivativesin Biomedical Engineering |
Zhu Wenxian, Yuan Ming, Tang Huadong*, |
(College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310000, China) |
|
|
Abstract Poly(vinyl amine) (PVAm) is a water soluble macromolecule containing the highest primary amine groups among all amino polymers. PVAm is featured by its polycation property, pH-responsive behaviour and high reactive activity, and has various applications in biomedical science, petrochemical engineering, paper manufacturing, textile printing, and wastewater treatment. In this work, the research progress on the applications of PVAm and its derivatives in biomedical engineering was reviewed and the research results produced in recent ten years in the fields of gene transfection, drug therapy and tissue engineering were summarized. The advantages and disadvantages of PVAm and its derivatives in these fields were comparatively analyzed and the development tendency in these technology areas was presented, which could provide forward guidance for the design and synthesis of PVAm derivatives and the exploration of their applications in biomedical engineering.
|
Received: 25 September 2018
|
|
|
|
|
[1] Rfynolds DD, Kenyon WO. The preparation of polyvinylamine, polyvinylamine salts, and related nitrogenous resins [J]. Macromolecules, 1947, 69(4): 911-915. [2] Gutlbault LJ, Murano M, Harwood HJ. Ion-exchange and chelation resins derived from poly(t-butyl n-vinyl carbamate) [J]. J Appl Polym Sci, 1973, 7(5): 1065-1078. [3] Achari AE, Coqueret X, Lablache-Combier A, et al. Preparation of polyvinylamine from polyacrylamide: a reinvestigation of the Hofmann reaction [J]. Macromol Chem Phys, 1993, 194: 1879-1891. [4] Dawson DJ, GLess RD, Wingard RE, Jr. Poly(vinylamine hydrochloride). Synthesis and utilization for the preparation of water-soluble polymeric dyes [J]. J Am Chem Soc, 1976, 98(19): 5996-6000. [5] Gu Leming, Zhu Shiping, Hrymak AN. Acidic and basic hydrolysis of poly(n-vinylformamide) [J]. J Appl Polym Sci, 2002, 86(13): 3412-3419. [6] Pinschmidt RK. Polyvinylamine at last [J]. J Polym Sci Pol Chem, 2010, 48(11): 2257-2283. [7] Pelton R. Polyvinylamine-A tool for engineering interfaces [J]. Langmuir, 2014, 30(51): 15373-15382. [8] 胡志勇, 张淑芬, 杨锦宗. 聚乙烯胺的合成与应用 [J]. 现代化工, 2002, 22(10): 14-25. [9] 范晖, 王锦堂. 聚乙烯胺的合成与应用 [J]. 化工时刊, 2005, 19(10): 45-48. [10] 王焕梅, 王萍萍, 曹约良, 等. 聚乙烯胺应用研究进展 [J]. 兰州石化职业技术学院学报, 2009, 9(1): 7-10. [11] Nimesh S, Aggarwal A, Kumar P, et al. Influence of acyl chain length on transfection mediated by acylated PEI nanoparticles [J]. Int J Pharmaceut, 2007, 337(1-2): 265-274. [12] Wolfert MA, Dash PR, Nazarova O, et al. Polyelectrolyte vectors for gene delivery: influence of cationic polymer on biophysical properties of complexes formed with DNA [J]. Bioconjugate Chem, 1999, 10(6): 993-1004. [13] Kondinskaia DA, Kostritskii AY, Nesterenko AM, et al. Atomic-scale molecular dynamics simulations of DNA–polycation complexes: two distinct binding patterns [J]. J Phys Chem B, 2016, 120(27): 6546-6554. [14] Kondinskaia DA, Gurtovenko AA. Supramolecular complexes of DNA with cationic polymers: The effect of polymer concentration [J]. Polymer, 2018, 142: 277-284. [15] Drean M, Debuigne A, Goncalves C, et al. Use of primary and secondary polyvinylamines for efficient gene transfection [J]. Biomacromolecules, 2017, 18(2): 440-451. [16] Drean M, Debuigne A, Jerome C, et al. Poly(n-methylvinylamine)-based copolymers for improved gene transfection [J]. Macromol Biosci, 2018, 18(4): 1700353. [17] Khondee S, Yakovleva T, Berkland C. Low charge polyvinylamine nanogels offer sustained, low-level gene expression [J]. J Appl Polym Sci, 2010, 118(4): 1921-1932. [18] Tachaboonyakiat W, Ajiro H, Akashi M. Controlled DNA interpolyelectrolyte complex formation or dissociation via stimuli-responsive poly(vinylamine-co-n-vinylisobutylamide) [J]. J Appl Polym Sci, 2016, 133(35): 43852. [19] Burke SK. Method for lowering serum glucose [P]. United States: 0187121, 2002-12-12. [20] Ahlers M, Glombik H, Grabley S, et al. Polyvinylamine derivatives having hydrophilic centers, processes for their preparation and the use of the compounds as a medicament, active compound carrier and foodstuff auxiliary [P]. United States: 5430110, 1995-07-04. [21] Mandeville WH III, Holmes-Farley SR. Process for removing bile salts from a patient and alkylated compositions therefor [P]. United States: 6225335, 2001-05-01. [22] 多米尼克·沙尔莫, 张汉廷, 歌里特·克莱纳, 等. 离子结合聚合物及其用途 [P]. 中国: 1001614, 2007-07-18. [23] Marhefka JN, Marascalco PJ, Chapman TM, et al. Poly(n- vinylformamide) - a drag-reducing polymer for biomedical applications [J]. Biomacromolecules, 2006, 7(5): 1597-1603. [24] Carraher CE, Ademu-John CM, Fortman JJ, et al. Polymeric derivatives of cis-dichlorodiammineplatinum II analogs based on polyvinylamine-co-vinylsulfonate as model carriers in thedrug delivery system [M]. New York: Springer, 1985: 173-181. [25] Parkinson TM, Brown JP, Wingard RE Jr. Polymeric agent for releasing 5-aminosalicylic acid or its salts into the gastrointestinal tract [P]. United States: 4190716, 1980-02-26. [26] Scorilas A, Bjartell A, Lilja H, et al. Streptavidin-polyvinylamine conjugates labeled with a europium chelate: applications in immunoassay, immunohistochemistry, and microarrays [J]. Clin Chem, 2000, 46(9): 1450-1455. [27] Mohammadi Z, Cole A, Berkland C. In situ synthesis of iron oxide within polyvinylamine nanoparticle reactors [J]. J Phys Chem C, 2009, 113(18): 7652-7658. [28] Mohammadi Z, Wang Xiang, Berkland C. Magnetic polyvinylamine nanoparticles by in situ precipitation reaction [J]. J Polym Sci Pol Chem, 2010, 48(4): 991-996. [29] Kenzaoui BH, Vila MR, Miquel JM, et al. Evaluation of uptake and transport of cationic and anionic ultrasmall iron oxide nanoparticles by human colon cells [J]. Int J Nanomed, 2012, 7: 1275-1286. [30] Yang Lihe, Chu Hong, Chen Mingqing, et al. Synthesis and drug release properties of thermosensitive poly(n-vinylacetamide-co- vinylacetate) hydrogels [J]. Chem Res Chinese U, 2011, 27(2): 334-338. [31] Yamamoto K, Serizawa T, Muraoka Y, et al. Synthesis and functionalities of poly(n-vinylalkylamide). 13. Synthesis and properties of thermal and pH stimuli-responsive poly(vinylamine) copolymers [J]. Macromolecules, 2001, 5(34): 8014-8020. [32] Shi Lianjun, Berkland C. Acid-labile polyvinylamine micro- and nanogel capsules [J]. Macromolecules, 2007, 40(13): 4635-4643. [33] Berkland CJ, Shi Lianjun. Nanoparticles, nanocapsules and nanogels [P]. United States: 0287262, 2011-11-24. [34] Saito H, Hoffman AS, Ogawa HI. Delivery of doxorubicin from biodegradable peg hydrogels having schiff base linkages [J]. J Bioact Compat Pol, 2016, 22(6): 589-601. [35] Wheatley MA, Chang M, Park E, et al. Coated alginate microspheres-factors influencing the controlled delivery of macromolecules [J]. J Appl Polym Sci, 1991, 43(11): 2123-2135. [36] Mokhtari H. Galactose modified polyvinylamine, a new class of water solule polymers [D]. Hamilton: McMaster University, 2012. [37] Renken A, Hunkeler D. Polyvinylamine-based capsules: a mechanistic study of the formation using alginate and cellulose sulphate [J]. J Microencapsul, 2007, 24(4): 323-336. [38] Franklin Lim RV. Sustained release [P]. United States: 4690682, 1987-09-01. [39] Sakuma S, Sudo R, Suzuki N, et al. Behavior of mucoadhesive nanoparticles having hydrophilic polymeric chains in the intestine [J]. J Control Release, 2002, 81(3): 281-290. [40] Akashi M, Kishida A, Sakuma S, et al. Fine grain carriers and medicinal composition prepared with the use of the same [P]. United States: 6100338, 2000-08-08. [41] Sakuma S, Sudo R, Suzuki N, et al. Mucoadhesion of polystyrene nanoparticles having surface hydrophilic polymeric chains in the gastrointestinal tract [J]. Int J Pharmaceut, 1999, 177(2): 161-172. [42] Sakuma S, Ishida Y, Sudo R, et al. Stabilization of salmon calcitonin by polystyrene nanoparticles having surface hydrophilic polymeric chains, against enzymatic degradation [J]. Int J Pharmaceut, 1997, 159(2): 181-189. [43] Dragan ES, Bucatariu F, Hitruc G. Sorption of proteins onto porous single-component poly(vinylamine) multilayer thin films [J]. Biomacromolecules, 2010, 11(3): 787-796. [44] Bucatariu F, Simon F, Bellmann C, et al. Stability under flow conditions of trypsin immobilized onto poly(vinyl amine) functionalized silica microparticles [J]. Colloid Surface A, 2012, 399: 71-77. [45] Thaiboonrod S, Milani AH, Saunders BR. Doubly crosslinked poly(vinyl amine) microgels: Hydrogels of covalently inter-linked cationic microgel particles [J]. J Mater Chem B, 2014, 2(1): 110-119. [46] Holland NB, Qiu Yongxing, Ruegsegger M, et al. Biominetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers [J]. Nature, 1998, 392(23): 799-801. [47] Qiu Yongxing, Zhang Tianhong, Ruegsegger M, et al. Novel nonionic oligosaccharide surfactant polymers derived from poly(vinylamine) with pendant dextran and hexanoyl groups [J]. Macromolecules, 1998, 31(1): 165-171. [48] Mokhtari H, Pelton R, Jin Liqiang. Polyvinylamine-g-galactose is a route to bioactivated silica surfaces [J]. J Colloid Interf Sci, 2014, 413: 86-91. [49] Sagnella S, Kligman F, Marchant RE, et al. Biomimetic surfactant polymers designed for shear-stable endothelialization on biomaterials [J]. J Biomed Mater Res A, 2002, 67(3): 689-701. [50] Sagnella SM, Kligman F, Anderson EH, et al. Human microvascular endothelial cell growth and migration on biomimetic surfactant polymers [J]. Biomaterials, 2004, 25(7-8): 1249-1259. [51] Larsen CC, Kligman F, Kottke-Marchant K, et al. The effect of RGD fluorosurfactant polymer modification of ePTFE on endothelial cell adhesion, growth, and function [J]. Biomaterials, 2006, 27(28): 4846-4855. [52] Jacab Domb A. Biocompatible polymeric coating material [P]. United States: 6127448, 2000-10-03. [53] Dimitrievska S, Maire M, Diaz-Quijada GA, et al. Low thrombogenicity coating of nonwoven PET fiber structures for vascular grafts [J]. Macromol Biosci, 2011, 11(4): 493-502. [54] Noel S, Liberelle B, Yogi A, et al. A non-damaging chemical amination protocol for poly(ethylene terephthalate) - application to the design of functionalized compliant vascular grafts [J]. J Mater Chem B, 2013, 1(2): 230-238. [55] Lanzalaco AC, Stark CM, Eylem C, et al. Deodorant methods [P]. United States: 0017190, 2014-01-16. [56] Westman EH, Ek M, Enarsson LE, et al. Assessment of antibacterial properties of polyvinylamine (pvam) with different charge densities and hydrophobic modifications [J]. Biomacromolecules, 2009, 10(6): 1478-1483. [57] Champ S, Koch O, EK M, et al. Biocidal coatings [P]. Europe: 055857, 2008-05-15. [58] 拓婷婷. 季铵化聚乙烯胺的合成及抗菌性能研究 [D]. 大连: 大连 理工大学, 2012. [59] Bromberg L, Hatton TA. Poly(n-vinylguanidine) characterization, and catalytic and bactericidal properties [J]. Polymer, 2007, 48(26): 7490-7498. [60] Green M, Stahmann MA. Virus inhibitory activity of polyvinylamine [J]. Proc Soc Exp Biol Med, 2015, 87(3): 507-509. |
[1] |
Li Min, Meng Xiangjing, Zhang Xiangkui, Liu Bo, Duan Chonggang, Zhang Lanying, Zhang Daizhou, Ling Peixue. Progress in Application of Hydrogels and Mesenchymal Stem Cells in Tissue Engineering[J]. Chinese Journal of Biomedical Engineering, 2020, 39(3): 367-374. |
[2] |
Zhang Yifan, Xu Mingen, Wang Ling, Zhang He. Coaxial 3D Bioprinting of Vascular Tissue Engineering Scaffolds forPromoting Endothelial Cell Growth[J]. Chinese Journal of Biomedical Engineering, 2020, 39(2): 206-214. |
|
|
|
|