|
|
Research Progress on the Structure Design and Optimization of Biodegradable Stents |
Peng Kun, Li Jing, Wang Sirui, Xia Jun, Qiao Aike#* |
(College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China) |
|
|
Abstract Due to the advantages of degradability and excellent biocompatibility, the biodegradable alloy stents, are expected to be the promising solution for the problems such as the restenosis of the permanent stents, the late stents thrombosis of drug eluting stents, leading the fourth generation of innovation in the field of the cardiovascular interventional therapy. However, insufficient scaffold performance and too short degradation time are the main limitations for the biodegradable stents in clinical application currently. To deal with these problems, stent design and optimization can be an effective method to improve scaffold performance of biodegradable stents and prolong their service time. Structure design and optimization of biodegradable stents is a complex process involving balance of different mechanical performances, hemodynamics and the changing of scaffold performance in corrosion environment. Therefore, in this article, the state-of-the-art design and optimization of the biodegradable stents were reviewed and the challenges and future research directions were pointed out.
|
Received: 17 August 2018
|
|
|
|
|
[1] Kuk KH, Ho J M.Zhou Y, Chen S, et al. Definite stent thrombosis after drug-eluting stent implantation in coronary bifurcation lesions: A meta-analysis of 3,107 patients from 14 randomized trials[J]. Catheter Cardiovasc Interv, 2017, 73(Suppl 1):1-10. [2] Univers J, Long C, Tonks SA, et al. Systemic hypersensitivity reaction to endovascular stainless steel stent[J]. Journal of Vascular Surgery, 2018, 67(2):615-617. [3] Kim MS, Dean LS. In-stent restenosis[J]. Cardiovascular Therapeutics, 2011, 29(3):190-198. [4] Moravej M, Mantovani D. Biodegradable metals for cardiovascular stent application: interests and new opportunities[J]. International journal of molecular sciences, 2011, 12(7): 4250-4270. [5] Hu Zhangting, Yang Chun, Lin Song, et al. Biodegradable stents for coronary artery disease treatment: Recent advances and future perspectives[J]. Materials Science and Engineering C, 2018, 91:163-178. [6] 皇甫强, 袁思波, 韩建业, 等. 生物可降解血管支架研究进展[J]. 中国材料进展, 2015, 34(5): 396-400. [7] Waksman R, Pakala R, Kuchulakanti PK, et al. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries[J]. Catheterization & Cardiovascular Interventions, 2010, 68(4):607-617. [8] Schranz D, Zartner P, Michel-Behnke I, et al. Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn[J]. Catheterization & Cardiovascular Interventions, 2010, 67(5):671-673. [9] Mao Lin, Shen Li, Chen Jiahui, et al. A promising biodegradable magnesium alloy suitable for clinical vascular stent application[J]. Scientific Reports, 2017, 7:1-12. [10] Lin Wenjiao, Qin Li, Qi Haiping, et al. Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold[J]. Acta Biomaterialia, 2017, 54:454-468. [11] Qi Yongli, Qi Haiping, He Yao, et al. Strategy of metal-polymer composite stent to accelerate biodegradation of iron-based biomaterials[J]. ACS Applied Materials & Interfaces, 2018,10(1):182-192. [12] Sing NB, Mostavan A, Hamzah E, et al. Degradation behavior of biodegradable Fe35Mn alloy stents[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2015, 103(3):572-577. [13] Hermawan H, Mantovani D. Process of prototyping coronary stents from biodegradable Fe-Mn alloys[J]. Acta biomaterialia, 2013, 9(10): 8585-8592. [14] Kubásek, J, Vojtěch, D, Jablonská, E, et al. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys[J]. Materials Science and Engineering: C, 2015, 58:23-35. [15] Wang Chang, Yu Zhentao, Cui Yajun, et al. Processing of a novel Zn alloy micro-tube for biodegradable vascular stent application[J]. Journal of Materials Science & Technology, 2016, 32(9):925-929. [16] Mostaed E, Sikora-Jasinska M, Mostaed A, et al. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60:581-602. [17] Liu Xiwei, Sun Jianke, Zhou Feiyu, et al. Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application[J]. Materials & Design, 2016, 94:95-104. [18] Liu Xiwei, Sun Jianke, Yang Yinghong, et al. Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel Zn-Mg-Sr alloys as biodegradable metals[J]. Materials Letters, 2016, 162:242-245. [19] Bowen PK, Guillory RJ, Shearier ER, et al. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents[J]. Materials Science and Engineering: C, 2015, 56:467-472. [20] Garciagarcia HM, Haude M, Kuku K, et al. In vivo serial invasive imaging of the second-generation drug-eluting absorbable metal scaffold (Magmaris - DREAMS 2G) in de novo coronary lesions: Insights from the BIOSOLVE-II First-In-Man Trial[J]. International Journal of Cardiology, 2018,255:22-28. [21] Haude M, Ince H, Abizaid A, et al. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial[J]. Lancet, 2016, 387(10013):31-39. [22] White CJ. Stent recoil: comparison of the Wiktor-GX coil and the Palmaz-Schatz tubular coronary stent[J]. Catheterization & Cardiovascular Diagnosis, 2015, 41(1):1-3. [23] 乔爱科,任庆帅,崔新阳,等.新型血管支架[P].中国专利:CN105147424A,2015-12-16. [24] 刘威.柔顺弯曲性和通过性好的冠脉支架[P].中国专利:CN205307147U,2016-06-15. [25] 樊瑜波,郭萌,储照伟.一种能均匀降解的聚乳酸血管支架[P].中国专利:CN106726037A,2017-05-31. [26] Peng Kun, Qiao Aike, Ohta Makoto, et al. Structural design and mechanical analysis of a novel biodegradable zinc alloy stent[J]. Computer Modeling in Engineering & Sciences, 2018, 117(1): 17-28. [27] Mews S, Backzewitz F. Medical supporting implant, in particular stent[P].United States Patent: US8241347B2, 2012-08-14. [28] 陈华杰,欧阳丽娟,陈勇,等.一种血管支架[P].中国专利:CN106726033A,2017-05-31。 [29] 埃里克V施密德,约翰D阮,史蒂文C霍华德,等.滑动锁紧支架[P].中国专利:CN101083957A,2007-12-05. [30] Tammareddi S, Sun Guangyong, Li Qing. Multiobjective robust optimization of coronary stents[J]. Materials & Design, 2016, 90:682-692. [31] Li Hongxia, Gu Junfeng, Wang Minjie, et al. Multi-objective optimization of coronary stent using Kriging surrogate model[J]. BioMedical Engineering OnLine, 2016, 15(2): 275-291. [32] Khosravi A, Akbari A, Bahreinizad H, et al. Optimizing through computational modeling to reduce dogboning of functionally graded coronary stent material[J]. Journal of Materials Science Materials in Medicine, 2017, 28(9):142-149. [33] Li Ning, Zhang Hongwu. Optimization model of longitudinal flexibility of a coronary stent[J]. Chinese Journal of Computational Mechanics, 2011, 28(3):315-319. [34] Azaouzi M, Makradi A, Belouettar S. Numerical investigations of the structural behavior of a balloon expandable stent design using finite element method[J]. Computational Materials Science, 2013, 72: 54-61. [35] Chang Chunming, Wong Weishin, Tsai JJP. Stent design for compensating wall shear stress via computational modeling and fluid dynamics[C]// 2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE). Taichung:IEEE, 2016: 204-207. [36] 郭飞飞, 冯海全, 江旭东, 等. 冠脉支架体外扩张过程的有限元分析[J]. 机械设计与制造, 2012(10): 237-239. [37] 王小平, 焦延鹏, 崔福斋. 新型可降解金属血管支架的有限元力学分析[J].机械设计与研究, 2007, 23(5): 59-61. [38] 王小平, 崔福斋, 李建国, 等. 新型可降解镁合金血管支架的力学分析[J]. 生物医学工程学杂志, 2009, 26(2): 338-341. [39] 毛志刚. AZ31 镁合金冠脉支架力学行为的有限元模拟[D]. 南京:南京理工大学, 2012. [40] 陈鸿亮, 刘祥坤, 袁广银, 等. 支架结构对其力学性能影响的有限元分析[J]. 计算机辅助工程, 2013, 22(A02): 424-427. [41] Li Junlei, Zheng Feng, Qiu Xun, et al. Finite element analyses for optimization design of biodegradable magnesium alloy stent[J]. Materials Science and Engineering: C, 2014, 42: 705-714. [42] 胡志勇, 王文雯, 冯海全, 等. 镁合金冠脉支架扩张力学性能模拟研究[J]. 功能材料, 2014, 45(B06): 132-137. [43] 王文雯. 镁合金冠脉支架结构设计及其优化[D]. 呼和浩特:内蒙古工业大学, 2014. [44] 王晓. 镁合金冠脉支架支撑性能的研究[D]. 呼和浩特:内蒙古工业大学, 2014. [45] Gomes IV, Puga H, Alves JL, et al. Finite element analysis of stent expansion: Influence of stent geometry on performance parameters[C]// Bioengineering. IEEE, 2017. [46] Wu Wei, Petrini L, Gastaldi D, et al. Finite element shape optimization for biodegradable magnesium alloy stents[J]. Annals of Biomedical Engineering, 2010, 38(9): 2829-2840. [47] 唐丹, 袁泉, 王志超, 等. 冠状动脉支架在弯曲血管中的血流动力学分析[J]. 中国组织工程研究, 2018(22):3563-3568. [48] Malota Z, Glowacki J, Sadowski W, et al. Numerical analysis of the impact of flow rate, heart rate, vessel geometry, and degree of stenosis on coronary hemodynamic indices[J]. Bmc Cardiovascular Disorders, 2018, 18(1):132-148. [49] Ren Xili, Qiao Aike, Song Hongfang, et al. Influence of bifurcation angle on in-stent restenosis at the vertebral artery origin: A simulation study of hemodynamics[J]. Journal of Medical & Biological Engineering, 2016, 36(4):555-562. [50] 徐创业. 冠脉球囊扩张支架置入术中血管结构和血流动力学分析[D]. 北京:首都医科大学,2017. [51] Balakrishnan B, Dooley JF, Kopia G, et al. Intravascular drug release kinetics dictate arterial drug deposition, retention, and distribution[J]. Journal of Controlled Release, 2007, 123(2): 100-108. [52] Brott B C. Linking drug-eluting stent kinetics and clinical outcomes: insights from optical coherence tomography[J]. JACC Cardiovascular Interventions, 2011, 4(7):786-788. [53] Tesfamariam B. Local vascular toxicokinetics of stent-based drug delivery[J]. Toxicology Letters, 2007, 168(2): 93-102. [54] Mongrain R, Faik I, Leask RL, et al. Effects of diffusion coefficients and struts apposition using numerical simulations for drug eluting coronary stents[J]. Journal of Biomechanical Engineering, 2007, 129(5): 733-742. [55] 李红霞. 冠脉支架的力学行为研究及其优化设计[D]. 大连:大连理工大学, 2014. [56] Gastaldi D, Sassi V, Petrini L, et al. Continuum damage model for bioresorbable magnesium alloy devices—Application to coronary stents[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(3): 352-365. [57] Grogan JA, Leen SB, McHugh PE. Optimizing the design of a bioabsorbable metal stent using computer simulation methods[J]. Biomaterials, 2013, 34(33): 8049-8060. [58] Debusschere N, Segers P, Dubruel P, et al. A computational framework to model degradation of biocorrodible metal stents using an implicit finite element solver[J]. Annals of Biomedical Engineering, 2016, 44(2):382-390. [59] Boland EL, Grogan JA, Conway C, et al. Computer Simulation of the mechanical behaviour of implanted biodegradable stents in a remodelling artery[J]. JOM, 2016, 68(4):1198-1203. |
[1] |
Xie Yixiang, Zhang Han, Zhu Weiping. Effect of Segmental Curvature on Stress Evolution of Lumbar Intervertebral Disc under Axial Vibration[J]. Chinese Journal of Biomedical Engineering, 2020, 39(1): 74-83. |
[2] |
Jin Qiankun, Wang Wei, He Shengwei, He Feixiong, Chen Bingzhi, Fu Yanmian. The Optimized Analysis on the Distribution Gradient of Material Attributes of Femur Finite Element Model[J]. Chinese Journal of Biomedical Engineering, 2020, 39(1): 84-90. |
|
|
|
|