|
|
Parameter Optimization in Face-Based P300 Speller System |
Sun Hongyan, Jin Jing*, Zhang Yu, Wang Bei ,Wang Xingyu |
School of Information Science and Technology, East China University of Science and Technology, Shanghai 200237, China |
|
|
Abstract The P300 based BCI is often used in speller system, because of its high accuracy and information transfer rate. Previous studies showed that face stimulus could induce recognizable event related potentials, which improve the performance of a P300 speller system. However, the form of face stimulus presentation also directly affects the system′s performance. The experiments we executed were under three different parameters: stimulus onset asynchrony (SOA) (130ms vs 200ms), the size of screen (15.6inch vs 24inch) and image pixels (50×69 vs 80×110), and 10 healthy subjects were invited to participate in this experiment. The results showed that enlarging the three parameters all improved the per-trial classification accuracy during the offline training. However, in the process of online testing, only the paradigm with 200 ms stimulus intervals achieved significantly higher online classification accuracy than that with 130 ms stimulus intervals (90%±7% vs 75%±13%). Besides, the three paradigms’ parameter adjustments have different influences on the amplitude of ERP, such as N200, P300, N400, et al. In the practical usage of P300 speller system, parameter optimization should be taken into consideration to improve the system′s performance.
|
Received: 28 March 2017
|
|
|
|
|
[1] Mak JN, Wolpaw JR. Clinical applications of brain-computer interfaces:current state and future prospects[J]. IEEE Reviews in Biomedical Engineering, 2009, 2:187-199. [2] Wolpaw JR, Birbaumer N, Mcfarland DJ, et al. Brain-computer interfaces for communication and control[J]. Clinical Neurophysiology, 2002, 113(6):767-791. [3] Yin Erwei, Zhou Zongtan, Jiang Jun, et al. A dynamically optimized SSVEP brain-computer interface (BCI) speller[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(6):1447-1456. [4] Chen Xiaogang, WangYijun, Nakanishi M, et al. High-speed spelling with a noninvasive brain-computer interface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(44):6058-6067. [5] Zhang Dan, Song Huaying, Xu Rui, et al. Toward a minimally invasive brain-computer interface using a single subdural channel: a visual speller study[J]. Neuroimage, 2013, 71(5):30-41. [6] 王行愚,蔡锋,金晶,等.听觉脑-机接口的智能机器人控制系统[J].控制理论与应用,2015, 32(9):1183-1190. [7] Li Yuanqing, Pan Jiahui, Long Jingyi, et al. Multimodal BCIs: target detection, multidimensional control, and awareness evaluation in patients with disorder of consciousness[J]. Proceedings of the IEEE, 2015, 104(2):332-352. [8] 明东,顾斌,刘爽,等.运动相关皮质电位在运动康复领域的应用[J].纳米技术与精密工程,2015,13(6):425-433. [9] 王金甲,杨成杰.P300脑机接口控制智能家居系统研究[J]. 生物医学工程学杂志, 2014,31(4):762-766. [10] Farwell LA, Donchin E. Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials[J]. Electroencephalography & Clinical Neurophysiology, 1988, 70(6):510-523. [11] Sellers EW, Mcfarland DJ. Toward enhanced P300 speller performance[J]. Journal of Neuroscience Methods, 2008, 167(1):15-21. [12] 马征,邱天爽. 视觉ERP脑机接口中实验范式的研究进展[J].中国生物医学工程学报,2016,35(1):96-104. [13] Hoffmann U, Vesin JM, Ebrahimi T, et al. An efficient P300 based brain-computer interface for disabled subjects[J]. Journal of Neuroscience Methods, 2008, 167(1):115-125. [14] Zhang Yu, Zhou Guoxu, Zhao Qibin, et al. Spatial-temporal discriminant analysis for ERP-based brain-computer interface[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2013, 21(2):233-243. [15] Jin Jing, Sellers EW, Zhang Yu, et al. Whether generic model works for rapid ERP-based BCI calibration[J]. Journal of Neuroscience Methods, 2012, 212(1):94-99. [16] Lotte F, Congedo M, Lecuyer A, et al. A review of classification algorithms for EEG-based brain-computer interfaces[J]. Journal of Neural Engineering, 2007, 4(2):R1-R13. [17] Guan C, Thulasidas M, Wu J. High performance P300 speller for brain-computer interface[C]// IEEE International Workshop on Biomedical Circuits and Systems.Singaporecity: IEEE, 2005:13-16. [18] Fazel-Rezai R, Abhari K. A comparison between a matrix-based and a region-based P300 speller paradigms for brain-computer interface[C]// International Conference of the IEEE Engineering in Medicine & Biology Society. Vancouver: IEEE, 2008:1147-1150. [19] Jin Jing, Allison BZ, Kaufmann T, et al. The changing face of P300 BCIs: a comparison of stimulus changes in a P300 BCI involving faces, emotion, and movement[J]. PLoS ONE, 2012, 7(11):e49688. [20] Jin Jing, Sellers EW, Wang Xingyu. Targeting an efficient target-to-target interval for P300 speller brain-computer interfaces[J]. Medical & Biological Engineering & Computing, 2012, 50(3):289-296. [21] Gonsalvez CJ, Polich J. P300 amplitude is determined by target-to-target interval[J]. Psychophysiology, 2002, 39(3):388-396. [22] Croft RJ, Gonsalvez CJ, Gabriel C, et al. Target-to-target interval versus probability effects on P300 in one- and two-tone tasks[J]. Psychophysiology, 2003, 40(3):322-328. [23] Kanwisher NG. Repetition blindness: Type recognition without token individuation[J]. Cognition, 1987, 27(2):117-143. [24] Salvaris M, Sepulveda F. Visual modifications on the P300 speller BCI paradigm[J]. Journal of Neural Engineering, 2009, 6(4):046011. [25] Takano K, Komatsu T, Hata N, et al. Visual stimuli for the P300 brain-computer interface: a comparison of white/gray and green/blue flicker matrices[J]. Clinical Neurophysiology, 2009, 120(8):1562-1566. [26] 马忠伟,高上凯.基于P300的脑-机接口:视觉刺激强度对性能的影响[J].清华大学学报(自然科学版), 2008, 48(3):415-418. [27] Xu Minpeng, JiaYihong, Qi Hongzhi, et al. Use of a steady-state baseline to address evoked vs. oscillation models of visual evoked potential origin[J]. Neuroimage, 2016, 134:204-212. [28] Kaufmann T, Schulz SM, Grünzinger C, et al. Flashing characters with famous faces improves ERP-based brain-computer interface performance[J]. Journal of Neural Engineering, 2011, 8(5):173-178. [29] Chen Long, Jin Jing, Zhang Yu, et al. A survey of the dummy face and human face stimuli used in BCI paradigm[J]. Journal of Neuroscience Methods, 2014, 239:18-27. [30] Zhang Yu, Zhao Qibin, Jin Jing, et al. A novel BCI based on ERP components sensitive to configural processing of human faces[J]. Journal of Neural Engineering, 2012, 9(2):26018-26030. [31] Jin Jing, Daly I, Zhang Yu, et al. An optimized ERP brain- computer interface based on facial expression changes[J]. Journal of Neural Engineering, 2014, 11(3):1082-1088. [32] Jin Jing, Allison BZ, Sellers EW, et al. An adaptive P300-based control system[J].Journal of Neural Engineering, 2011, 8(3):292-301. [33] Townsend G, Lapallo BK, Boulay CB, et al. A novel P300-based brain-computer interface stimulus presentation paradigm: Moving beyond rows and columns[J]. Clinical Neurophysiology, 2010, 121(7):1109-1120. [34] Lu J, Speier W, Hu Xiao, et al. The effects of stimulus timing features on P300 speller performance[J]. Clinical Neurophysiology, 2013, 124(2):306-314. [35] Tanaka JW, Farah MJ. Parts and wholes in face recognition[J]. The Quarterly Journal of Experimental Psychology Section, 1993, 46(2):225-245. [36] Moscovitch M, Winocur G, Behmann M. What is special about face recognition? Nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition[J]. Journal of Cognitive Neuroscience, 1997,9(5):555-604. [37] 马忠伟,高上凯. 基于P300电位的脑机接口系统中参数优化问题的研究[J]. 中国生物医学工程学报, 2009, 28(6):851-855. [38] 尧德中,刘铁军,雷旭,等. 基于脑电的脑-机接口:关键技术和应用前景[J]. 电子科技大学学报, 2009, 38(5):550-554. |
[1] |
Liu Fei ,Zhang Junran ,Yang Hao. Research Progress of Medical Image Recognition Based on Deep Learning[J]. Chinese Journal of Biomedical Engineering, 2018, 37(1): 86-94. |
[2] |
Maimaitiaili Abulikemu, Wang Tengfei, Tao Ying ,Wang Xiaoshuai ,Xu Leilei ,Song Xinghua. Establishment of New Bone Tissue Engineering Three-Dimensional Complex in vitro[J]. Chinese Journal of Biomedical Engineering, 2018, 37(1): 124-128. |
|
|
|
|