|
|
Degradation Behaviors of Silk Fibroin Scaffolds with Different Pore Sizes in vivo |
Qian Jianfeng1,3, Cai Lihui1, Qi Weidong1*, Zhao Xia1, Chen Xin2 |
1(Department of Otolaryngology Head and Neck Surgery, Huashan Hospital Fudan University, Shanghai 200040, China) 2(State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China) 3(Department of Otolaryngology Head and Neck Surgery, Zhengzhou People's Hospital, Zhengzhou 450012, China) |
|
[1] Khademhosseini A, Vacanti JP, Langer R. Progress in tissue engineering [J]. Sci Am, 2009, 300(5): 64-71. [2] Navone SE, Pascucci L, Dossena M, et al. Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice. [J]. Stem Cell Res Ther, 2014, 5(7): 2-15. [3] Morita Y, Tomita N, Aoki H, et al. Frictional properties of regenerated cartilage in vitro [J]. J Biomech, 2006, 39(1): 103-109. [4] Byette F, Bouchard F, Pellerin C, et al. Cell-culture com-patible silk fibroin scaffolds concomitantly patt erned by freezing conditions and salt concentration [J]. Polym Bull, 2011,67(1): 159-175. [5] Yang Y, Chen X, Ding F, et al. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro [J]. Biomaterials, 2007, 28(9): 1643-1652. [6] Mandal BB, Kundu SC. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds [J]. Biomaterials, 2009, 30(28): 5019-5030. [7] Shangkai C, Naohide T, Koji Y, et al. Transplantation of allogeneic chondrocytes cultured in fibroin sponge and stirring chamber to promote cartilage regeneration [J]. Tissue Eng, 2007, 13(3): 483-492. [8] Lovett M. Silk fibroin microtubes for blood vessel engineering [J]. Biomaterials, 2007, 28(35): 5271-5279. [9] 焦微,赵霞,陆艳,等. 许旺细胞在不同孔径丝素蛋白支架上的生长[J]. 中国组织工程研究与临床康复, 2011, 15(25): 4607-4610. [10] 唐鸣,赵霞,陈新,等 多孔丝素蛋白支架修复兔下颌骨临界性骨缺损[J]. 中国组织工程研究与临床康复, 2013, 17(8): 1337-1343. [11] Vepari C, Kaplan DL. Silk as a biomaterial [J]. Progress in Polymer Science, 2007, 32(8-9): 991-1007. [12] Wang Y1, Rudym DD, Walsh A, et al. In vivo degradation of three-dimensional silk fibroin scaffolds [J]. Biomaterials, 2008, 29(24-25): 3415-3428. [13] Yumin Yang, Yahong Zhao, Yun Gu, et al. Degradation behaviors of nerve guidance conduits made up of silk fibroin in vitro and in vivo [J]. Polymer Degradation and Stability, 2009, 94(12): 2213-2220. [14] GB/T 16886.6-1997/IS010993-6:1994, 医疗器械生物学评价 第6部分;植入后局部反应试验[S]. [15] Cao Y, Wang B. Biodegradation of silk biomaterials [J]. Int J Mol Sci, 2009, 10(4): 1514-1524. [16] Wang Y, Rudym DD, Walsh, A. et al. In vivo degradation of three-dimensional silk fibroin scaffolds[J]. Biomaterials, 2008, 29(24-25): 3415-3428. [17] Numata K, Cebe P, Kaplan DL.Mechanism of enzymatic degradation of beta-sheet crystals. [J]. Biomaterials, 2010,3(1): 2926-2933. [18] Horan RL, Antle K, Collette AL, et al. In vitro degradation of silk fibroin [J]. Biomaterials, 2005, 26(17): 3385-3393. [19] Woolfson DN, Ryadnov MG. Peptide-based fibrous biomaterials: Some things old, new and borrowed [J]. Curr Opin Chem Biol, 2006, 10(6): 559-567. |
[1] |
Nan Fang, Wang Qiaoli, Lai Chen, Xi Tingfei. Research on the Synthesis of Modified Bacterial Cellulose/Hydroxyapatite Sponges[J]. Chinese Journal of Biomedical Engineering, 2016, 35(3): 330-339. |
[2] |
Qiu Bingxia1 Li Hong1*Wang Yu′an1 Li Wenkang1 Tao Meng1 Chen Fengnong1 Chen Jie2 The Cellular Automata Model and Optimization Algorithm of Tissue Engineering Cartilage[J]. journal1, 2016, 35(2): 252-256. |
|
|
|
|