|
|
The Design of Movement Quality Assessment System |
1 College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350000, China
2 Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou 350000, China |
|
|
Abstract This article proposed a rehabilitative training monitoring system for knee osteoarthritis patients, by which the patient can know their standardized degree of movement and make appropriate adjustments. We designed a quality assessment system of human lower extremity movement which was based on ZigBee wireless communication technology. The system can evaluate the action standardization of movement therapy. We mounted ZigBee module with miniature accelerometer sensor on human lower extremity, by acquiring threedimensional acceleration signal through the movement after Haar wavelet transformation, the system extracts wavelet eigenvalue using particle swarm optimization. These eigenvalues will be supplied in neural network classifier which can evaluate the quality of movement. By evaluating the exercise quality of lying straight leg raise training for 20 healthy men aged 24~30, the mean and standard deviations for these four training truth probability (specification, foot over, hold time is too short, nonparallel leg lifts ) were(89.1±2.0)%,(93.4±1.7)%,(89.5±2.3)%,(90.1±1.8)%. Experimental results show that the system can effectively identify the nonstandard action from training process and realize the monitoring and evaluation of lying straight leg raise training, which can meet the demands of health monitoring system.
|
|
|
|
|
[1]梁平, 李胜利. 膝骨性关节炎的临床治疗进展 [J]. 中国中医骨伤科杂志,2006,14(3):65-67.
[2]Shull P, Lurie K, Shin M, et al. Haptic gait retraining for knee osteoarthritis treatment [C]// Proceedings of the IEEE Haptics Symposium 2010. Waltham: IEEE,2010: 409-416.
[3]Wrigley TV, Simic M, Hunt MA, et al. Realtime movement biofeedback for walking gait modification in knee osteoarthritis [C]// Proceedings of the Virtual Rehabilitation International Conference 2009. Haifa : IEEE,2009:132-135.
[4]沈钦荣. 中医药治疗膝骨性关节炎实验研究进展 [J]. 中国中医药科技杂志,2004,11(6):389-390.
[5]郝高庭, 黄有荣. 自然疗法治疗膝骨性关节炎近况 [J].浙江中西医结合杂志,2010, 20(5):326-327.
[6]李声飞. 基于WSN的穿戴式人体姿态与健康监护系统的研制 [D]. 重庆:重庆大学,2010.
[7]Taylor PE, Almeida JM, Kanade T,et al. Classifying human motion quality for knee osteoarthritis using accelerometers [C]// Proceedings of the 32nd Annual International Conference of the IEEE EMBS Buenos Aires. Argentina: IEEE,2010:339-343.
[8]Taylor PE, Almeida DA, Hodgins JK, et al. Multilabel classification for the analysis of human motion quality [C]// Proceedings of the 34th Annual International Conference of the IEEE EMBS. San Diego:IEEE,2012:2214-2218.
[9]Nyan MN, Tay FE, Murugasu E. A wearable system for preimpaet fall detection [J]. Joumai of Biomechanics,2008, 41(12):3475-3481.
[10]王昌喜, 扬先军, 徐强, 等. 基于三维加速度传感器的上肢动作识别系统[J].传感技术学报,2010,23(6):816-819.
[11]Wu Guangrong, Zhang Jiaxiong. Realization of wireless sensor network based on CC2430[J]. Modern Electronics Technique, 2008,31(12):121-123.
[12]Yun Xiaoping, Bachmarm E, McGhee R. A simplified quaternion based algorithm for orientation estimation from Earth gravityand magnetic field measurements [J]. IEEE Transactions on Instrumentatfon and Measurement, 2008,57(3): 638-650.
[13]邓亚平, 杨佳, 胡亚明. 动态分簇的导构传感器网络安全路由协议 [J]. 重庆邮电大学学报,自然科学版,2011,23(3): 336-342.
[14]Tentori M, Favela J. Activityaware computing for healthcare[J]. IEEE Pervasive Computing, 2008,8(5): 51-57.
[15]Stiefmeier T, Roggen D, Ogris G, et al. Wearable activity tracking in car manufacturing [J].IEEE Pervasive Computing, 2008,7(2):55-62.
[16]Choudhury T, Borriello G, Consolvo S, et al. The mobile sensing platform: an embedded activity recognition system[J]. IEEE Pervasive Computing, 2008, 7(2): 32-41.
[17]Yang Junying, Wang Jeenshing, Chen Yenping. Using acceleration measurements for activity recognition: an effective learning algorithm for constructing neural classifiers[J]. Pattern Recognition Letters, 2008, 29(1): 2213-2220.
[18]田建勋, 陈香, 李云, 等. 一种基于加速度与表面肌电信息融合和统计语言模型的连续手语识别方法 [J]. 中国生物医学工程学报,2011,30(3):333-339.
[19]肖金壮, 齐佳龙, 王洪瑞. 基于小波分析的人体平衡指标提取方法研究 [J]. 中国生物医学工程学,2012,31(7): 507-511.
[20]高春芳, 吕宝粮, 马家昕. 一种用小波包变换提取眼电信号警觉度特征的方法 [J]. 中国生物医学工程学报,2012,31(5):641-648.
[21]支联合, 谭素敏, 杨建国. 基于小波包变换的特征提取方法分析fMRI数据[J]. 中国生物医学工程学报,2012, 31(6):956-961. |
|
|
|