|
|
Progresses in Artificial SmallDiameter Blood Vessel Grafts and their Preparation Methods |
1 School of Medical Laboratory & Life Science, Wenzhou Medical College, Wenzhou 325035, China
2 Biomedical Engineering Research Center,Shenzhen Institute of Peking University, Shenzhen 518057, China |
|
|
Abstract Vascular transplantation is one of the main methods in the treatment of cardiovascular diseases. The development of small caliber artificial blood vessel also becomes the focus in the nearly 10 years. This paper introduces the research progress from the aspects of materials and methods of the preparation of small diameter artificial blood vessels in recent years. First we describe the synthetic materials and natural biological materials, then introduce the research progress dip leaching method, coagulation method, decellularization organization composition, electrostatic spinning method, rotating exposure method, tissue engineering blood vessel scaffold method and 3D rapid prototyping technology. It presents the characteristics of different materials and preparation methods for uses in small caliber artificial blood vessels and provides certain reference for further developments of ideal artificial blood vessels as well as its prospects.〖KH2D〗
〖WTHZ〗Key words:〖WTBZ〗〖BP(〗┣┣(英)关键词┫┫〖BP)〗〖HT〗〖ST〗〖WT〗〖HJ〗〖HK〗
〖FL(K2〗
|
|
|
|
|
[1]Losi P, Lombardi S, Briganti E, et al. Luminal surface microgeometry affects platelet adhesion in smalldiameter synthetic grafts [J]. Biomaterials, 2004,25(18):4447-4455.
[2]王维慈,欧阳晨曦,周飞,等. 高分子材料小口径人造血管的相关研究[J]. 中国组织工程研究与临床康复,2008,12(1):125-128.
[3]Robinson WP, Owens CD, Nguyen LL, et al. Inferior outcomes of autogenous infrainguinal bypass in hispanics: all analysis of ethnicity, graft function and limb salvage [J]. J Vasc Surg, 2009, 49 (6) : 1416- 1425.
[4]Madhavan K, Belchenko D, Motta A, et al. Evaluation of composition and crosslinking effects on collagenbased composite constructs [J]. Acta Biomater, 2010, 6 (4) : 1413- 1422.
[5]Mori E, Komori K, Kume M, et al. Comparison of the longterm results between surgical and conservative treatment in patients with intermittent claudication[J]. Surgery,2012,131:s269.
[6]夏成勇,刘长建,乔彤,等. 磷酰胆碱接枝涤纶人工血管的生物相容性[J]. 中国动脉硬化杂志,2007,15(12):906-908.
[7]孟想.小口径人工血管的快速激光加工研究[D]. 吉林:吉林大学,2012.
[8]Golden MA, Hanson SR, Kirkman TR, et al. Healing of polytetrafluoroethylene arterial grafts is influenced by graft porosity [J]. Journal of Vascular Surgery, 1990,11(6):838-845.
[9]Kohler TR, Stration JR, Kirkman TR,et al. Conventional versus highporosity politetrafluoroethylene grafts: clinical evaluation [J]. Surgery,1992,112 (5) : 901 -907.
[10]李少彬,闫玉生,李辉,等. 等离子体磺酸化丝素蛋白膜聚四氟乙烯复合小口径人工血管的制备[J].中国组织工程研究与临床康复,2010,14(8):1357-1360.
[11]李少彬,闫玉生,李辉,等. 等离子体磺酸化丝素蛋白膜聚四氟乙烯复合小口径人工血管体外的实验研究[J].南方医科大学学报,2010,30(9):2100-2103.
[12]徐雅硕,钟银屏,付强,等. 聚氨酯人工血管的研究进展[J].功能材料, 2012,1(43):6-9.
[13]Wang Z,Liu S, Guidoin R,et al. Polyurethane vascular grafts with thorough porosity: dose an internalor an external membrane wrapping improve their in vivo blood compatibility and biofunctionality[J]. Artificial Cells, Blood Substitutes, and Biotechnol, 2004,32(3):463-484.
[14]Grasl C, Bergmeister H, Stoiber M, et al. Electrospunpolyurethane vascular grafts:in vitro mechanical behavior and endothelial adhesion molecule expression[J]. J Biomed Mater Res Part A, 2012, 93(2):716-723.
[15]Taite LJ, Yang P, Jun HW, et al. Nitric oxidereleasing polyurethanePGE copolymer containing the YIGSR peptide promotes endothelialization with decreased platelet adhesion[J]. J Biomed Mater Res Part B:Appl Biomater,2008,84(1):108-116.
[16]Gao Guoliang, Song Jianfei, Wang Haiyong, et al. Subcutaneous implantation of bone marrow mesenchymal stem cellspolyglycolic acid scaffold complex to construct small diameter tissueengineered blood vessels[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2011,15(51):9544-9548.
[17]Zhao Qiang,Wang Shufang,Kong Meimei,et al. Phase morphology,physical properties,and biodegradation behavior of novel PLA / PHBHHx blends[J]. Journal of Biomedical Materials Research B: Applied Biomaterials,2012,100B( 1) : 23-31.
[18]Liu Y,Wang W,Wang J, et al.Blood compatibility evaluation of poly( d,lLactideCoBetaMalic Acid) modified with the GRGDS sequence[J]. Colloids and Surfaces B: Biointerfaces,2010,75:370-376.
[19]Bryan WT, Saani KY, Sang JL, et al. The in vivo stability of electronspun polycaprolactone collagen scaffords in vascular reconstruction[J]. Biomaterials, 2009, 30(4):583-588.
[20]崔新战,黄霞,关绍康,等. 高分子材料涂覆生物镁合金心血管支架的研究与应用[J].中国组织工程研究,2012,16(51):9635-9639.
[21]刘生和,王建广,范存义,等.小肠黏膜下层粘接交联制作小口径血管支架[J].中国组织工程研究与临床康复,2007,11(32): 6374-6378.
[22]Liu Jiaojiao, Zeng Changqian. Effect of hyaluronan in angiogenesis of tumor[J]. J Beihua Univ (Natl Sci), 2003, 10(4): 393-395.
[23]Wang Yanhou, Wang Fengshan, Guo Xueping. Angiogenesis effects of low molecular weight hyaluronic acid[J]. Chin Pharm J, 2007,5(42): 664-666.
[24]孙秀娟,范代娣,朱晨辉,等. 类人胶原蛋白-透明质酸血管支架的性能及生物相容性[J].生物工程学报,2009,25(4): 591-598.
[25]Laura P, Barbara Z, Franco B, et al. Hyaluronic acid biodegradable material for reconstruction of vascular wall: A preliminary study in rats[J]. Microsurgery, 2011, 31(2):138-145.
[26]黄福华. 丝素蛋白涂层人工血管的研制[D]. 北京:北京协和医学院, 2009.
[27]Irene C, Marina F, Nadia A, et al. In vivo regeneration of elastic lamina on fibroin biodegradable vascular scaffold [J]. Int J Artif Organs, 2013, 36(3):166-174.
[28]Yang Xiaoyuan, Wang Lu, Guan Guoping, et al. Preparation and evaluation of biocomponent and homogeneous polyester silk small diameter arterial prostheses[J]. Journal of Biomaterials Applications, 3 Jan,2013 [Epub ahead of Print].
[29]孔晓颖,韩宝芹,王海霞,等. 可降解性壳聚糖基小口径人工血管的生物安全性[J]. 青岛大学医学院学报,2012,48(4):334-340.
[30]Kong Xiaoying, Han Baoqin, Wang Haixia, et al. Mechanical properties of biodegradable smalldiameter chitosan artificial vascular prosthesis[J]. J Biomed Mater Res Part A, 2012,100A:1938-1945.
[31]谭勇,刘四新,李从发. 细菌纤维素在医学方面的应用[J].现代生物医学进展,2008,8(12):2344-2346.
[32]李喆,颜志勇,陈仕艳,等.医用细菌纤维素的性能研究[J].生物医学工程学杂志,2012,29(1):164-169.
[33]Dieter A, Schumann JW, Dieter O, et al. Artificial vascular implants from bacterial cellulose:preliminary results of small arterial substitutes[J]. Cellulose,2009,〖STHZ〗16:877-885.
[34]Carl JM, Bo R, Aase B, et al. Small calitre biosynthetic cellulose blood vessels:13-months patercy in a sheep model[J]. Scandonavian Cardiovascular Journal, 2012,46:57-62.
[35]Brown EE, Laborie MPG, Zhang J. Glutaraldehyde treatment of bacterial cellulose/fibrin composites: impact on morphology, tensile and viscoelastic properties[J]. Cellulose, 2012:127-137.
[36]韩本松,范存义,张菁,等. 仿生技术构建小口径人工血管[J]. 中国生物工程杂志,2009,29(10):81-86.
[37]潘仕荣,李松奇,唐兴奎,等. 小口径微孔聚氨酯人工血管的动物体内植入研究[J]. 中国生物医学工程学报,2008,27(3):451-456.
[38]Chen JH, Laiw RF, Jiang SF,et al. Microporous segmented polyetherurethane vascular graft: I. Dependency of graft morphology and mechanical properties on compositions and fabrication conditions [J]. Journal of Biomedical Materials Research, 1999, 48(3):235-245.
[39]江雷,冯琳.仿生智能纳米材料[M].北京:化学工业出版社,2007.
[40]Sill TJ, von Reeum HA. Electrospinning: applications in drug delivery and tissue engineering[J]. Biomaterials,2008,29: 1989-2006.
[41]王淑芳,郑文婷,孔德领. 体内组织工程构建小口径人工血管的研究进展[J]. 中国材料进展,2012,31(9):6-19.
[42]Michael JM,Patricia SW,David GS,et al.The use of airflow impedance to control fiber deposition patterns during electrospinning[J]. Biomaterials,2012,33:771-775.
[43]McClure MJ, Wolfe PS, Bowlin GL, et al. The use of airflow impedance to control fiber deposition patterns during electrospinning [J]. Biomaterials,2012,33(3):771-779.[44]Hyun-Min K, Tadashi K, Shunsuke F, et al. Bioactive macroporous titanium surface layer on titanium substrate[J]. J Biomed Mater Res, 2000, 52(3): 553-557.
[45]De MA, Bolvin C, Edirisinghe M, et al. Development of cardiovascular bypass grafts: endothelialization and applications of nanotechnology [J]. Expert Review of Cardiovascular Therapy, 2008, 6(9):1259-1277.
[46]Du Fengyi, Wang Hao, Zhao Wei, et al. Gradient nanofibrous chitosan/poly -caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering [J].Biomaterials,2012,33:762-770.
[47]Goonoo N, Luximon AB, Bowlinb GL,et al. An assessment of biopolymer and synthetic polymerbased scaffolds for bone and vascular tissue engineering [J]. Polym Int ,2013,62: 523-533
[48]王琛,郭芳芳,张昀,等. 应用脂肪干细胞构建组织工程化小口径血管平滑肌层的实验研究[J]. 组织工程与重建外科杂志,2012,8(5):249-255.
[49]Amaresh KR, Umesh K, Ashutosh AH, et al. Human blood vessel–derived endothelial progenitors for endothelialization of small diameter vascular prosthesis[J]. PLoS ONE, 2009, 4(11):7718-7727.
[50]Andradea FK, Costa R, Domingues L, et al. Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulosebinding module and an adhesion peptide[J]. Acta Biomaterialia, 2010,6(10):4034–4041.
[51]袁晓燕,张红,贾潇凌,等. 电纺纤维膜双重控制释放生长因子及小口径人工血管研究[J]. 生物医用高分子材料,2012:515-517.
[52]傅博,黄大伟,孙雪峰, 等. 血管组织工程种子细胞的建立及意义[J]. 中国中西医结合肾病杂志,2011,1:8-11.
[53]王位,陆亚林,杨卓如,等. 三维快速成型打印机成型材料[J]. 铸造技术,2012,30(12):103-106.
[54]周丽宏,陈自强,黄国友,等.细胞打印技术及应用[J]. 中国生物工程杂志,2012,30(12):95-104.
[55]Marga F, Jakab K, Khatiwala C, et al. Organ Printing: A Novel Tissue Engineering Paradigm[J]. IFMBE Proceedings,2012,37:27-30.
[56]凯瑟琳.哈蒙,王权,欧阳宏伟.打印器官内部的血管[J]. 环球科学,2013,89:30-31 |
|
|
|