|
|
Development Status of General Brain-Computer Interface Software Platform |
He Feng1,2#, Wang Changhao1, Wang Kun1,2#*, Mei Jie1, Luo Ruixin1, Xu Minpeng1,2#, Ming Dong1,2# |
1(Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China) 2(Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin 300392, China) |
|
|
Abstract Brain-computer interface (BCI) is a next-generation disruptive human-machine interaction technology that establishes a direct information pathway between the brain and external devices. Building a complete BCI system requires both hardware devices and software systems. The software system includes steps such as stimulus presentation, signal acquisition, signal processing, and command feedback, which have high technical requirements. To address this challenge, researchers have released a series of general BCI software platforms to provide solutions for BCI software development. The article focused on the stages of BCI technology development and systematically outlined key features of general BCI software platforms at different stages. Furthermore, we elaborated on the functional characteristics of 11 representative products. At the end of this review, we discussed the challenges and possible solutions of existing general BCI software platforms, aiming to promote continuous optimization and development of these platforms for practical applications.
|
Received: 12 November 2023
|
|
Corresponding Authors:
*E-mail: flora_wk@tju.edu.cn
|
About author:: #Member, Chinese Society of Biomedical Engineering |
|
|
|
[1] Kawala-Sterniuk A, Browarska N, Al-Bakri A, et al. Summary of over fifty years with brain-computer interfaces—a review [J]. Brain Sciences, 2021, 11(1): 43. [2] Mridha MF, Das SC, Kabir MM, et al. Brain-computer interface: advancement and challenges [J]. Sensors, 2021, 21(17): 46-57. [3] Orban M, Elsamanty M, Guo K, et al. A review of brain activity and EEG-based brain-computer interfaces for rehabilitation application [J]. Bioengineering-Basel, 2022, 9(12): 768. [4] Richard L, Charbonneau D. An introduction to E-Prime [J]. Tutorials in Quantitative Methods for Psychology, 2009, (5)2: 68-76. [5] Vision DS, Vision S. The Psychophysics Toolbox [J]. Spatial Vision, 1997, 10(4): 433-436. [6] Peirce JW. PsychoPy—Psychophysics software in Python [J]. J Neurosci Methods, 2007, 162(1-2): 8-13. [7] Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis [J]. Journal of Neuroscience Methods, 2004, 134(1): 9-21. [8] Gramfort A, Luessi M, Larson E, et al. MNE software for processing MEG and EEG data [J]. NeuroImage, 2014, 86: 446-460. [9] Schalk G, Mcfarland DJ, Hinterberger T, et al. BCI2000: a general-purpose brain-computer interface (BCI) system [J]. IEEE Trans Biomed Eng, 2004, 51(6): 1034-1043. [10] Silverman KEA, Beckman ME, Pitrelli JF, et al. ToBI: a standard for labeling English prosody [C] //International Conference on Spoken Language Processing, eds. 2nd International Conference on Spoken Language Processing, Alberta, Canada: University of Alberta, Edmonton, 1992: 867-870. [11] 董玥欣, 万梦方. 天津大学. 正式发布!天大医工院牵头研发我国首个脑机接口综合性开源软件平台[EB/OL]. http://news.tju.edu.cn/info/1003/63377.htm, 2022-11-21/2023-10-30. [12] Schlogl A, Brunner C. BioSig: a free and open source software library for BCI research [J]. Computer, 2008, 41(10): 44-50. [13] Bianchi L, Babiloni F, Cincotti F, et al. Introducing BF++: a C++ framework for cognitive bio-freedback systems design [J]. Methods of Information in Medicine, 2003, 42(1): 104-110. [14] Parnas DL. On the criteria to be used in decomposing systems into modules [J]. Communications of the ACM, 1972, 15(12): 1053-1058. [15] Gerven M Van, Farquhar J, Schaefer R, et al. The brain-computer interface cycle [J]. Journal of Neural Engineering, 2009, 6(4): 41-61. [16] Perego P, Maggi L, Parini S, et al. BCI++: a new framework for brain computer interface application [C] // 18th International Conference on Software Engineering and Data Engineering 2009 (SEDE-2009). Las Vegas: International Society for Computers and Their Applications (ISCA), 2009: 37-41. [17] Renard Y, Lotte F, Gibert G, et al. OpenViBE: an open-source software platform to design, test, and use brain-computer interfaces in real and virtual environments [J]. Presence-Teleoperators and Virtual Environments, 2010, 19(1): 35-53. [18] Kothe CA, Makeig S. BCILAB: a platform for brain-computer interface development [J]. Journal of Neural Engineering, 2013, 10(5): 56-64. [19] Susila IP, Kanoh SI, Miyamoto K, et al. xBCI: a generic platform for development of an online BCI system [J]. IEEJ Transactions on Electrical and Electronic Engineering, 2010, 5(4): 467-473. [20] 王亚, 李永欣, 黄文华. 人类脑计划的研究进展 [J]. 中国医学物理学杂志, 2016, 33(2): 109-112. [21] Durka PJ,Kuś R,Żygierewicz J, et al. User-centered design of brain-computer interfaces: OpenBCI.pl and BCI appliance [J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2012, 60(3): 427-431. [22] Venthur B, Scholler S, Williamson J, et al. Pyff - a pythonic framework for feedback applications and stimulus presentation in neuroscience [J]. Frontiers in Neuroscience, 2010, 4: 179. [23] Venthur B, Blankertz B. Mushu, a free-and open source BCI signal acquisition, written in Python [C] //Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego: IEEE, 2012: 1786-1788. [24] Venthur B, Dähne S, Höhne J, et al. Wyrm: a brain-computer interface toolbox in Python [J]. Neuroinformatics, 2015, 13: 471-486. [25] Cincotti F, Mattia D, F Aloise, et al. High-resolution EEG techniques for brain-computer interface applications [J]. Journal of Neuroscience Methods, 2008, 167(1): 31-42. [26] Cincotti F, Mattia D, Aloise F, et al. Non-invasive brain-computer interface system: towards its application as assistive technology [J]. Brain Research Bulletin, 2008, 75(6): 796-803. [27] Bell CJ, Shenoy P, Chalodhorn R, et al. Control of a humanoid robot by a noninvasive brain-computer interface in humans [J]. Journal of Neural Engineering, 2008, 5(2): 214-214. [28] Valle DCV del, Carrere LC, Tabernig CB. A new signal source module for BCI2000 interface to an open-source multichannel acquisition system [C] // XIX Workshop on Information Processing and Control (RPIC), San Juan: IEEE, 2021: 1-4. [29] Kleih-Dahms SC, Botrel L, Kübler A. The influence of motivation and emotion on sensorimotor rhythm‐based brain-computer interface performance [J]. Psychophysiology, 2021, 58(8): 132-138. [30] Scherer R, Müller-Putz GR, et al. Chapter 9 Flexibility and Practicality: Graz Brain-Computer Interface Approach [C] // International Review of Neurobiology, Washington: Academic Press, 2009: 119-131. [31] Vidaurre C, Sander TH, Schlögl A. BioSig: the free and open source software library for biomedical signal processing [J]. Computational Intelligence and Neuroscience, 2011, 2011: 53-64. [32] Akuthota S, Rajkumar K, Ravichander J. EEG based motor imagery BCI using four class iterative filtering & four class filter bank common spatial pattern [C] // 2023 International Conference on Advances in Electronics, Bangalore: IEEE, 2023: 429-434. [33] Ryabinin K, Chuprina S, Labutin I. Ontology-driven toolset for audio-visual stimuli representation in EEG-based BCI research [C]//Conference on Computer Graphics and Vision(GraphiCon), Moscow: Institute of Applied Mathematics, Russian Academy of Sciences, 2021: 223-234. [34] Quitadamo LR, Marciani MG, L Bianchi. Optimization of brain computer interface systems by means of XML and BF++ Toys [J]. International Journal of Bioelectromagnetism, 2007, 9(3): 172-184. [35] Sung Y, Cho K, Um K. A development architecture for serious games using BCI (brain computer interface) sensors [J]. Sensors, 2012, 12(11): 15671-15688. [36] Breitwieser C, Tavella M, Schreuder M, et al. TiD—introducing and benchmarking an event-delivery system for brain-computer interfaces [C] // International Conference of the IEEE Engineering in Medicine and Biology Society. North Carolina: IEEE, 2017: 2249-2257. [37] Pfurtscheller G, Allison BZ, Bauernfeind G, et al. The hybrid BCI [J]. Frontiers in Neuroscience, 2010, 4: 1283. [38] Breitwieser C, Kreilinger A, Neuper C, et al. The TOBI hybrid BCI-the data acquisition module [C] // Proceedings of the First TOBI Workshop. Graz: Institute of Neural Engineering, 2010: 58-58. [39] Yadav H, Maini S. Electroencephalogram based brain-computer interface: applications, challenges, and opportunities [J]. Multimedia Tools and Applications, 2023, 82(30): 47003-47047. [40] Pinegger A, Hiebel H, Wriessnegger SC, et al. Composing only by thought: novel application of the P300 brain-computer interface [J]. PLoS ONE, 2017, 12(9): 181-184. [41] Quiles E, Dadone J, Chio N, et al. Cross-platform implementation of an SSVEP-based BCI for the control of a 6-DOF robotic arm [J]. Sensors, 2022, 22(13): 237-245. [42] Prapas G, Glavas K, Tzallas AT, et al. Motor imagery approach for BCI game development [C/OL] /2022 7th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Ioannina: IEEE, 2022: 1-5. [43] Marshall RJ, Jackson RT. Analysis of case-crossover designs [J]. Statistics in Medicine, 1993, 12(24): 2333-2341. [44] Lee YE, Shin GH, Lee M, et al. Mobile BCI dataset of scalp-and ear-EEGs with ERP and SSVEP paradigms while standing, walking, and running [J]. Scientific Data, 2021, 8(1): 315. [45] Herath H, De Mel WR. Controlling an anatomical robot hand using the brain-computer interface based on motor imagery[J]. Advances in Human-Computer Interaction, 2021, 2021: 1-15. [46] Nandikolla V, Ghoslin B, Matsuno K, et al. A Brain-computer interface for teleoperation of a semiautonomous mobile robotic assistive system using SLAM [J]. Journal of Robotics, 2022, 2022: 617-629. [47] Carasol L Pérez. Development of a graphical user interface for processing and visualization of brain computer interface experiments [J]. Treballs Finals de Grau (TFG), 2021, 2021:67-69. [48] Albawardi H, Almoaibed A, Abbas NAl, et al. Design of low-cost steady state visually evoked potential-based brain computer interface using OpenBCI and neuromore [C/OL] // International Conference on Bio-Engineering for Smart Technologies (BioSMART). Paris: IEEE, 2021: 1-4. [49] Kuhn S, George N. Performance of OpenBCI EEG binary intent classification with laryngeal imagery [EB/OL]. https://epublications.regis.edu/facultypubs/1/, 2021-07-01/2023-10-30. [50] 许敏鹏, 罗睿心, 韩锦, 等. 刺激视野面积对稳态视觉诱发电位的影响 [J]. 信号处理, 2022, 38(10): 2064-2073. [51] Mei Jie, Luo Ruixin, Xu Lichao, et al. MetaBCI: an open-source platform for brain-computer interfaces [J]. Computers in Biology and Medicine, 2024, 168: 78-106. [52] 许敏鹏, 吴乔逸, 熊文田, 等. 面向中高频SSVEP脑机接口的编解码算法研究 [J]. 信号处理, 2022, 38(9): 1881-1891. |
[1] |
Ying Shaofei, Qin Daiyou, Xie Jiaxin, Gao Dongrui, Qin Yun, Liu Tiejun. Heart Rate Variability Based Automatic Sleep Staging and its Validation with EEG[J]. Chinese Journal of Biomedical Engineering, 2024, 43(1): 18-26. |
[2] |
Yang Shuyao, Xie Yuhai, Gong Yuchen, Liu Qiangqiang, Zhang Puming. Stereo-Electroencephalography Guided Radiofrequency Thermocoagulation Prognosis Prediction Based on Brain Network Features of Patients with Refractory Epilepsy[J]. Chinese Journal of Biomedical Engineering, 2023, 42(6): 651-658. |
|
|
|
|