|
|
Research on Fatigue Process Estimation of Muscle Tissue Based on Ultrasonic Radiofrequency Nakagami Model |
Ran Jianqing, Lv Qian, Zhang Xueqing, Gao Jie, Guo Jianzhong#* |
(College of Physics and Information Technology, Shaanxi Normal University, Shaanxi Key Laboratory of Ultrasound Science, Xi′an 710119, China) |
|
|
|
Received: 19 March 2022
|
|
Corresponding Authors:
*E-mail: guojz@snnu.edu.cn
|
About author:: #Member, Chinese Society of Biomedical Engineering |
|
|
|
[1] 郭鑫, 于天源, 周嫱, 等. 肌肉疲劳及肌肉损伤机制研究综述[J].中华中医药杂志, 2016, 31(7): 2720-2724. [2] Baumert P, Temple S, Stanley JM, et al. Neuromuscular fatigue and recovery after strenuous exercise depends on skeletal muscle size and stem cell characteristics[J]. Scientific Reports, 2021, 11(1): 7733. [3] Neto MAG, Luz OGL, Farinatti TP. Diagnostic accuracy of pre-exercise screening questionnaire: Emphasis on educational level and cognitive status[J]. Archives of Gerontology and Geriatrics, 2013, 57(2): 211-214. [4] Kahl L, Hofmann UG. Comparison of algorithms to quantify muscle fatigue in upper limb muscles based on sEMG signals[J]. Medical Engineering & Physics, 2016, 38: 1260-1269. [5] 杨铮, 王立玲, 马东. 基于自回归模型表面肌电信号检测肌肉疲劳研究[J]. 中国生物医学工程学报, 2018, 37(6): 673-679. [6] Tasuku M Tomohiko K,Hiroyuki K, et al. Automatic detection method of muscle fiber movement as revealed by ultrasound images[J]. Medical Engineering and Physics, 2008, 31(5): 558-564. [7] Harding PJ, Loram ID, Combes N, et al. Ultrasound-based detection of fasciculations in healthy and diseased muscles[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(3): 512-518. [8] 王前, 曹霞, 尹冠军, 郭建中. 超声图像熵特性的肌肉疲劳进程评估[J]. 中国生物医学工程学报, 2015, 34(1): 30-36. [9] Li Pan, Yang Xuebing, Yin Guanjun, Guo Jianzhong. Skeletal muscle fatigue state evaluation with ultrasound image entropy[J]. Ultrasonic Imaging, 2020, 42(6): 235-244. [10] Moradi M, Abolmaesumi P, Mousavi P. Tissue typing using ultrasound RF time series: experiments with animal tissue samples[J]. Medical Physics, 2010, 37(8): 4401-4413. [11] Xu Huan, Liu Chunrui, Yang Ping, et al. A nonlinear approach to identify pathological change of thyroid nodules based on statistical analysis of ultrasound RF signals[J]. Scientific Reports, 2017,7(1): 16930. [12] Destrempes F, Franceschini E, Yu FTH, et al. Unifying concepts of statistical and spectral quantitative ultrasound techniques[J]. IEEE Transactions on Medical Imaging, 2016, 35(2): 488-500. [13] 吴珊, 尚少强, 王雪维, 等. 基于Nakagami统计参量的活体微波热消融超声监控成像研究[J].生物医学工程学杂志, 2019, 36(3): 371-378. [14] 高凡, 屠娟, 章东. 超声射频信号的甲状腺结节智能诊断方法[J]. 应用声学, 2021, 40(1): 51-59. [15] Hill AV. The maximum work and mechanical efficiency of human muscles, and their most economical speed[J].The Journal of Physiology, 1922, 56(1-2): 19-41. [16] Vivekanandan S, Emmanuel DS, Saluja RS. Modelling of gastrocnemius muscle using Hill′s equation in COMSOL Multiphysics 4.0a[J]. International Journal of Computer Science Issues (IJCSI), 2012, 9(3): 396-400. |
[1] |
Jiang Shuying, Li Zhiming, Mo Xian, Sun Ang, Zhang Junran. Active Iterative Optimization of Leukocyte Image Classification Model with Fused Attention[J]. Chinese Journal of Biomedical Engineering, 2024, 43(4): 408-418. |
[2] |
Fan Shanhui, Lai Jintao, Wei Shangguang, Wei Kaihua, Fan Yihong, Lv Bin, Li Lihua. Real-Time Target Detection of Abnormal Regions in Gastrointestinal Endoscopy Based on GE-YOLO[J]. Chinese Journal of Biomedical Engineering, 2024, 43(4): 385-398. |
|
|
|
|