|
|
Recent Advances on Antidromic Activation of Deep Brain Stimulation |
Yi Guosheng, Jiao Lifeng, Wang Jiang, Wei Xile* |
(School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China) |
|
|
Abstract Deep brain stimulation (DBS) is an effective treatment for movement disorders, which is also a common tool for probing the function of neural circuits. Although the therapeutic efficacy of DBS has already been demonstrated in clinics, the precise mechanisms of its action still remain largely unclear, which limits the further development, optimization, and application of this technology. Electrophysiological experiments and computational models indicate DBS preferentially activates the axons and presynaptic terminals, and the resulting axonal spikes stimulate the cell body and dendrites of target cells as well as the upstream and downstream nuclei through inducing antidromic activation, orthodromic activation, and neurotransmitter release. The fibers projecting to the target nuclei exhibit complex branching structures, which enables the antidromic activation to be an important cellular mechanism underlying the widespread effects of DBS on multiple anatomical structures. Particularly, antidromic activation contributes to the understanding of microscopic, mesoscopic, and macroscopic effects of DBS. In this paper, we first summarized the general cellular principles of action of DBS, and mainly introduced the stimulus-induced antidromic activation. Then, we presented an exhaustive review on the main findings of antidromic activation pattern in recent years, and discussed the implications of antidromic activation for understanding the effects of DBS. Finally, we raised several key issues on the antidromic activation that need to be addressed in the future.
|
Received: 09 September 2020
|
|
|
|
|
[1] Lozano AM, Lipsman N, Bergman H, et al. Deep brain stimulation: Current challenges and future directions [J]. Nat Rev Neurol, 2019, 15(3): 148-160. [2] Cagnan H, Denison T, McIntyre C, et al. Emerging technologies for improved deep brain stimulation [J]. Nat Biotechnol, 2019, 37(9): 1024-1033. [3] 潘盈盈, 徐一峰, 江开达, 等. 深部脑刺激治疗神经精神疾病的研究进展 [J]. 临床精神医学杂志, 2018, 28(4): 279-281. [4] 刘婷红, 张建国, 孟凡刚. 脑深部电刺激术治疗阿尔茨海默病的研究进展 [J]. 中华神经外科杂志, 2017, 33(1): 96-99. [5] 徐红令, 余化霖. 脑深部电刺激术治疗难治性抑郁症研究进展 [J]. 中国神经精神疾病杂志, 2018, 44(4): 253-256. [6] 蔡宇翔, 杨治权. 深部脑刺激术治疗难治性癫痫的研究进展 [J]. 国际神经病学神经外科学杂志, 2017, 44(4): 451-454. [7] 吴芸昊, 张陈诚, 张莹莹, 等. 脑深部电刺激在难治性强迫症治疗中的研究进展 [J]. 中华精神科杂志, 2020, 53(2): 146-150. [8] Rezaei Haddad A, Lythe V, Green AL. Deep brain stimulation for recovery of consciousness in minimally conscious patients after traumatic brain injury: A systematic review [J]. Neuromodulation, 2019, 22(4): 373-379. [9] Wichmann T, Delong MR. Deep-brain stimulation for basal ganglia disorders [J]. Basal Ganglia, 2011, 1(2): 65-77. [10] Michmizos KP, Lindqvist B, Wong S, et al. Computational neuromodulation: Future challenges for deep brain stimulation [J]. IEEE Signal Processing Magazine, 2017, 34(2): 114-119. [11] Kuncel AM, Cooper SE, Wolgamuth BR, et al. Clinical response to varying the stimulus parameters in deep brain stimulation for essential tremor [J]. Mov Disord, 2006, 21(11): 1920-1928. [12] Ushe M, Mink JW, Revilla FJ, et al. Effect of stimulation frequency on tremor suppression in essential tremor [J]. Mov Disord, 2004, 19(10): 1163-1168. [13] Moro E, Esselink RJ, Xie J, et al. The impact on Parkinson's disease of electrical parameter settings in STN stimulation [J]. Neurology, 2002, 59(5): 706-713. [14] Fogelson N, Kühn AA, Silberstein P, et al. Frequency dependent effects of subthalamic nucleus stimulation in Parkinson's disease [J]. Neurosci Lett, 2005, 382(1-2): 5-9. [15] O'Suilleabhain PE, Frawley W, Giller C, et al. Tremor response to polarity, voltage, pulsewidth and frequency of thalamic stimulation [J]. Neurology, 2003, 60(5): 786-790. [16] Kringelbach ML, Jenkinson N, Owen SL, et al. Translational principles of deep brain stimulation [J]. Nat Rev Neurosci, 2007, 8(8): 623-635. [17] Veerakumar A, Berton O. Cellular mechanisms of deep brain stimulation: Activity-dependent focal circuit reprogramming? [J]. Curr Opin Behav Sci, 2015, 4: 48-55. [18] Chiken S, Nambu A. Mechanism of deep brain stimulation: Inhibition, excitation, or disruption? [J]. Neuroscientist, 2016, 22(3): 313-322. [19] Montgomery EB Jr. Deep Brain Stimulation Programming: Principles and Practice [M]. Oxford: Oxford University Press, 2010: 17-29. [20] Yi Guosheng, Grill WM. Frequency-dependent antidromic activation in thalamocortical relay neurons: effects of synaptic inputs [J]. J Neural Eng, 2018, 15(5): 056001. [21] Yousif N, Purswani N, Bayford R, et al. Evaluating the impact of the deep brain stimulation induced electric field on subthalamic neurons: a computational modelling study [J]. J Neurosci Methods, 2010, 188(1): 105-112. [22] 封洲燕, 郭哲杉, 王兆祥. 深部脑刺激作用机制的研究进展 [J]. 生物化学与生物物理进展, 2018, 45(12): 1197-1203. [23] 马维健, 封洲燕, 周文杰, 等. 高频电刺激改变神经元发放与场电位节律之间的锁相关系 [J]. 生物医学工程学杂志, 2018, 35(1): 1-7. [24] 胡汉汉, 封洲燕, 王兆祥, 等. 变间隔的脉冲改变高频刺激对于脑神经元的作用 [J]. 生物化学与生物物理进展, 2019, 46(8): 804-811. [25] 朱玉芳, 封洲燕, 王兆祥, 等. 高频电刺激改变神经元锋电位的波形 [J]. 生物化学与生物物理进展, 2016, 43(8): 787-795. [26] Grill WM, Cantrell MB, Robertson MS. Antidromic propagation of action potentials in branched axons: implications for the mechanisms of action of deep brain stimulation [J]. J Comput Neurosci, 2008, 24(1): 81-93. [27] McIntyre CC, Grill WM. Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output [J]. J Neurophysiol, 2002, 88(4): 1592-1604. [28] Dostrovsky JO, Levy R, Wu JP, et al. Microstimulation-induced inhibition of neuronal firing in human globus pallidus [J]. J Neurophysiol, 2000, 84(1): 570-574. [29] Nowak LG, Bullier J. Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements [J]. Exp Brain Res, 1998, 118(4): 477-488. [30] Nowak LG, Bullier J. Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments [J]. Exp Brain Res, 1998, 118(4): 489-500. [31] McIntyre CC, Grill WM, Sherman DL, et al. Cellular effects of deep brain stimulation: Model-based analysis of activation and inhibition [J]. J Neurophysiol, 2004, 91(4): 1457-1469. [32] McIntyre CC, Grill WM. Excitation of central nervous system neurons by nonuniform electric fields [J]. Biophys J, 1999, 76(2): 878-888. [33] Gauthier J, Parent M, Lévesque M, Parent A. The axonal arborization of single nigrostriatal neurons in rats [J]. Brain Res, 1999, 834(1-2): 228-232. [34] Parent M, Parent A. Axon collateralization in primate basal ganglia and related thalamic nuclei [J]. Thalamus & Related Systems, 2002, 2(1): 71-86. [35] Lévesque M, Parent A. The striatofugal fiber system in primates: A reevaluation of its organization based on single-axon tracing studies [J]. Proc Natl Acad Sci USA, 2005, 102(33): 11888-11893. [36] Kitai ST, Deniau JM. Cortical inputs to the subthalamus: Intracellular analysis [J]. Brain Res, 1981, 214(2): 411-415. [37] Sato F, Lavallée P, Lévesque M, et al. Single-axon tracing study of neurons of the external segment of the globus pallidus in primate [J]. J Comp Neurol, 2000, 417(1): 17-31. [38] Sato F, Parent M, Levesque M, et al. Axonal branching pattern of neurons of the subthalamic nucleus in primates [J]. J Comp Neurol, 2000, 424(1): 142-152. [39] Iremonger KJ, Anderson TR, Hu B, et al. Cellular mechanisms preventing sustained activation of cortex during subcortical high-frequency stimulation [J]. J Neurophysiol, 2006, 96(2): 613-621. [40] Li Qian, Ke Ya, Chan DC, et al. Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex [J]. Neuron, 2012, 76(5): 1030-1041. [41] McIntyre CC, Richardson AG, Grill WM. Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle [J]. J Neurophysiol, 2002, 87(2): 995-1006. [42] Stys PK, Waxman SG. Activity-dependent modulation of excitability: implications for axonal physiology and pathophysiology [J]. Muscle Nerve, 1994, 17(9): 969-974. [43] David G, Modney B, Scappaticci KA, et al. Electrical and morphological factors influencing the depolarizing after-potential in rat and lizard myelinated axons [J]. J Physiol, 1995, 489(Pt 1): 141-157. [44] Chiken S, Nambu A. High-frequency pallidal stimulation disrupts information flow through the pallidum by GABAergic inhibition [J]. J Neurosci, 2013, 33(6): 2268-2280. [45] Lee KH, Chang SY, Roberts DW, et al. Neurotransmitter release from high-frequency stimulation of the subthalamic nucleus [J]. J Neurosurg, 2004, 101(3): 511-517. [46] Xiao Yizi, Agnesi F, Bello EM, et al. Deep brain stimulation induces sparse distributions of locally modulated neuronal activity [J]. Sci Rep, 2018, 8(1): 2062. [47] Johnson MD, McIntyre CC. Quantifying the neural elements activated and inhibited by globus pallidus deep brain stimulation [J]. J Neurophysiol, 2008, 100(5): 2549-2563. [48] Anderson RW, Farokhniaee A, Gunalan K, et al. Action potential initiation, propagation, and cortical invasion in the hyperdirect pathway during subthalamic deep brain stimulation [J]. Brain Stimul, 2018, 11(5): 1140-1150. [49] Balbi P, Martinoia S, Colombo R, et al. Modelling recurrent discharge in the spinal α-motoneuron: reappraisal of the F wave [J]. Clin Neurophysiol, 2014, 125(2): 427-429. [50] Balbi P, Martinoia S, Massobrio P. Axon-somatic back-propagation in detailed models of spinal alpha motoneurons [J]. Front Comput Neurosci, 2015, 9: 15. [51] Florence G, Sameshima K, Fonoff ET, et al. Deep brain stimulation: More complex than the inhibition of cells and excitation of fibers [J]. Neuroscientist, 2016, 22(4): 332-345. [52] Pittman QJ. Increases in antidromic latency of neurohypophyseal neurons during sustained activation [J]. Neurosci Lett, 1983, 37(3): 239-243. [53] Zhou Lei, Chiu SY. Computer model for action potential propagation through branch point in myelinated nerves [J]. J Neurophysiol, 2001, 85(1): 197-210. [54] Goldfinger MD. Highly efficient propagation of random impulse trains across unmyelinated axonal branch points: Modifications by periaxonal K+ accumulation and sodium channel kinetics [M]// Modeling in the Neurosciences. Florida: Taylor and Francis, 2005: 479-530. [55] Benazzouz A, Gao DM, Ni ZG, et al. Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat [J]. Neuroscience, 2000, 99(2): 289-295. [56] Boraud T, Bezard E, Bioulac B, et al. High frequency stimulation of the internal globus pallidus (GPi) simultaneously improves parkinsonian symptoms and reduces the firing frequency of GPi neurons in the MPTP-treated monkey [J]. Neurosci Lett, 1996, 215(1): 17-20. [57] Anderson ME, Postupna N, Ruffo M. Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey [J]. J Neurophysiol, 2003, 89(2): 1150-1160. [58] Hashimoto T, Elder CM, Okun MS, et al. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons [J]. J Neurosci, 2003, 23(5): 1916-1923. [59] Benazzouz A, Piallat B, Pollak P, et al. Responses of substantia nigra pars reticulata and globus pallidus complex to high frequency stimulation of the subthalamic nucleus in rats: electrophysiological data [J]. Neurosci Lett, 1995, 189(2): 77-80. [60] Starr PA, Vitek JL, Bakay RA. Deep brain stimulation for movement disorders [J]. Neurosurg Clin N Am, 1998, 9(2): 381-402. [61] Deniau JM, Degos B, Bosch C, et al. Deep brain stimulation mechanisms: Beyond the concept of local functional inhibition [J]. Eur J Neurosci, 2010, 32(7): 1080-1091. [62] Maurice N, Thierry AM, Glowinski J, et al. Spontaneous and evoked activity of substantia nigra pars reticulata neurons during high-frequency stimulation of the subthalamic nucleus [J]. J Neurosci, 2003, 23(30): 9929-9936. [63] Montgomery EB Jr. Effects of GPi stimulation on human thalamic neuronal activity [J]. Clin Neurophysiol, 2006, 117(12): 2691-2702. [64] Walker HC, Watts RL, Guthrie S, et al. Bilateral effects of unilateral subthalamic deep brain stimulation on Parkinson's disease at 1 year [J]. Neurosurgery, 2009, 65(2): 302-310. [65] Degos B, Deniau JM, Chavez M, et al. Subthalamic nucleus high-frequency stimulation restores altered electrophysiological properties of cortical neurons in parkinsonian rat [J]. PLoS ONE, 2013, 8(12): e83608. [66] Dejean C, Hyland B, Arbuthnott G. Cortical effects of subthalamic stimulation correlate with behavioral recovery from dopamine antagonist induced akinesia [J]. Cereb Cortex, 2009, 19(5): 1055-1063. [67] Whitmer D, de Solages C, Hill B, et al. High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson's disease [J]. Front Hum Neurosci, 2012, 6: 155. [68] Weiss D, Klotz R, Govindan RB, et al. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson's disease [J]. Brain, 2015, 138(Pt 3): 679-693. [69] de Hemptinne C, Swann NC, Ostrem JL, et al. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease [J]. Nat Neurosci, 2015, 18(5): 779-786. [70] Gradinaru V, Mogri M, Thompson KR, et al. Optical deconstruction of parkinsonian neural circuitry [J]. Science, 2009, 324(5925): 354-359. [71] Baker KB, Montgomery EB Jr, Rezai AR, et al. Subthalamic nucleus deep brain stimulus evoked potentials: Physiological and therapeutic implications [J]. Mov Disord, 2002, 17(5): 969-983. [72] Hanajima R, Ashby P, Lozano AM, et al. Single pulse stimulation of the human Subthalamic nucleus facilitates the motor cortex at short intervals [J]. J Neurophysiol, 2004, 92(3): 1937-1943. [73] Yi Guosheng, Wang Jiang. Frequency-dependent energy demand of dendritic responses to deep brain stimulation in thalamic neurons: a model-based study [J]. IEEE Trans Neural Netw Learn Syst, 9 Jul, 2020 [Epub ahead of print]. [74] 封洲燕, 余颖, 曹嘉悦, 等. 大鼠海马神经元群体对于高频电刺激的响应 [J]. 中国生物医学工程学报, 2014, 33(2): 186-193. [75] Kuncel AM, Cooper SE, Wolgamuth BR, et al. Amplitude- and frequency-dependent changes in neuronal regularity parallel changes in tremor with thalamic deep brain stimulation [J]. IEEE Trans Neural Syst Rehabil Eng, 2007, 15(2): 190-197. [76] Grill WM, Snyder AN, Miocinovic S. Deep brain stimulation creates an informational lesion of the stimulated nucleus [J]. Neuroreport, 2004, 15(7): 1137-1140. [77] Kumaravelu K, Brocker DT, Grill WM. A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease [J]. J Comput Neurosci, 2016, 40(2): 207-229. [78] Hua SE, Lenz FA. Posture-related oscillations in human cerebellar thalamus in essential tremor are enabled by voluntary motor circuits [J]. J Neurophysiol, 2005, 93(1): 117-127. [79] Birdno MJ, Kuncel AM, Dorval AD, et al. Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation [J]. J Neurophysiol, 2012, 107(1): 364-383. [80] Swan BD, Brocker DT, Hilliard JD, et al. Short pauses in thalamic deep brain stimulation promote tremor and neuronal bursting [J]. Clin Neurophysiol, 2016, 127(2): 1551-1559. [81] Jech R, Urgosík D, Tintera J, et al. Functional magnetic resonance imaging during deep brain stimulation: A pilot study in four patients with Parkinson's disease [J]. Mov Disord, 2001, 16(6): 1126-1132. [82] Kahan J, Mancini L, Urner M, et al. Therapeutic subthalamic nucleus deep brain stimulation reverses cortico-thalamic coupling during voluntary movements in Parkinson's disease [J]. PLoS ONE, 2012, 7(12): e50270. [83] Zhao Siyuan, Li Gen, Tong Chuanjun, et al. Full activation pattern mapping by simultaneous deep brain stimulation and fMRI with graphene fiber electrodes [J]. Nat Commun, 2020, 11(1): 1788. [84] Grafton ST, Turner RS, Desmurget M, et al. Normalizing motor-related brain activity: Subthalamic nucleus stimulation in Parkinson disease [J]. Neurology, 2006, 66(8): 1192-1199. [85] Trost M, Su S, Su P, et al. Network modulation by the subthalamic nucleus in the treatment of Parkinson's disease [J]. Neuroimage, 2006, 31(1): 301-307. [86] Asanuma K, Tang Chengke, Ma Yilong, et al. Network modulation in the treatment of Parkinson's disease [J]. Brain, 2006, 129(Pt 10): 2667-2678. [87] Shih YY, Yash TV, Rogers B, et al. FMRI of deep brain stimulation at the rat ventral posteromedial thalamus [J]. Brain Stimul, 2014, 7(2): 190-193. [88] Paek SB, Min HK, Kim I, et al. Frequency-dependent functional neuromodulatory effects on the motor network by ventral lateral thalamic deep brain stimulation in swine [J]. Neuroimage, 2015, 105: 181-188. [89] Haslinger B, Kalteis K, Boecker H, et al. Frequency-correlated decreases of motor cortex activity associated with subthalamic nucleus stimulation in Parkinson's disease [J]. Neuroimage, 2005, 28(3): 598-606. [90] O'Herron P, Chhatbar PY, Levy M, et al. Neural correlates of single-vessel haemodynamic responses in vivo [J]. Nature, 2016, 534(7607): 378-382. [91] Attwell D, Iadecola C. The neural basis of functional brain imaging signals [J]. Trends Neurosci, 2002, 25(12): 621-625. [92] Li Su, Arbuthnott GW, Jutras MJ, et al. Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation [J]. J Neurophysiol, 2007, 98(6): 3525-3537. [93] Moran A, Stein E, Tischler H, et al. Dynamic stereotypic responses of basal ganglia neurons to subthalamic nucleus high-frequency stimulation in the parkinsonian primate [J]. Front Syst Neurosci, 2011, 5: 21. [94] Kang G, Lowery MM. Effects of antidromic and orthodromic activation of STN afferent axons during DBS in Parkinson's disease: A simulation study [J]. Front Comput Neurosci, 2014, 8: 32. [95] 曹嘉悦, 封洲燕, 郭哲杉, 等. 闭环式电刺激抑制痫样棘波发放的机制研究 [J]. 中国生物医学工程学报, 2016, 35(1): 79-87. |
|
|
|