|
|
A Review of Brain Tissue Microstructural Imaging Based on Diffusion Magnetic Resonance |
Xu Yonghong*, Ding Ling |
(School of Electrical Engineering,Yanshan University,Qinhuangdao 066004,Hebei,China) |
|
|
Abstract Microstructure imaging is a new technology developed to improve some of the shortcomings of traditional diffusion magnetic resonance imaging. The microstructure imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. It is currently undergoing a transition from laboratory research to clinical applications. In this article, we first introduced the diffusion magnetic resonance imaging technology, analyzed the main problems existing and explained the principle of microstructure imaging. In the following parts, the research status of multi-compartment models was reviewed such as CHARMED and NODDI, including model composition, model optimization and clinical application. The research progress of deep learning algorithm applied to microstructure imaging was reviewed as well. At last, the development trend of microstructure imaging technology was prospected.
|
Received: 30 April 2020
|
|
|
|
|
[1] Stejskal EO, Tanner JE. Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient [J]. Chem Phys, 1965, 42(1): 288-292. [2] Wesbey GE, Moody ME, Ehman RL. Translational molecular self-diffusion in magnetic resonance imaging (II): Measurement of the self-diffusion coefficient [J]. Invest Radiol, 1984, 19(6): 491-498. [3] Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images [J]. NMR Biomed, 1995, 8(7): 333-344. [4] Tuch DS, Reese TG, et al. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity [J]. Magn Reson Med, 2002, 48: 577-582. [5] Schultz T, Seidel HP. Estimating crossing fibers: A tensor decomposition approach [J]. IEEE Trans Vis Comput Graph, 2008, 14: 1635-1642. [6] Barmpoutis A, Hwang MS, Howland D, et al. Regularized positive-definite fourth order tensor field estimation from DW-MRI [J]. NeuroImage, 2009, 45: 153-162. [7] zarslan E, Shepherd T, Vemuri B, et al. Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT) [J]. NeuroImage, 2006, 31: 1086-1103. [8] Wedeen V, Hagmann P, Tseng WY, et al. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging [J]. Magn Reson Med, 2005, 54: 1377-1386. [9] Canales-Rodríguez E, Melie-García L, Iturria-Medina Y, et al. Mathematical description of Q-space in spherical coordinates: Exact Q-ball imaging [J]. Magn Reson Med, 2009, 61: 1350-1367. [10] Aganj I, Lenglet C, Sapiro G, et al. Reconstruction of the orientation distribution function in single-and multiple-shell Q-ball imaging within constant solid angle [J]. Magn Reson Med, 2010, 64: 554-566. [11] Alexander DC. Maximum entropy spherical deconvolution for diffusion MRI [C] // Information Processing in Medical Imaging. Berlin: Springer-Verlag, 2005: 76-87. [12] Dell'Acqua F, Rizzo G, Scifo P, et al. A model-based deconvolution approach to solve fiber crossing in diffusion-weighted MR imaging [J]. IEEE Trans Biomed Eng, 2007, 54: 462-472. [13] Descoteaux M, Deriche R, Knosche T, et al. Deterministic and probabilistic tractography based on complex fibre orientation distributions [J]. IEEE Trans Med Imaging, 2009, 28: 269-286. [14] Kiselev VG. Fundamentals of diffusion MRI physics [J]. NMR Biomed, 2017, 30: e3602. [15] Alexander DC, Dyrby TB, Nilsson M, et al. Imaging brain microstructure with diffusion MRI: Practicality and applications [J]. NMR in Biomedicine, 2019, 32: e3841. [16] Torrey HC. Bloch equations with diffusion terms [J]. Phys Rev, 1956, 104: 563-565. [17] Hahn EL. Spin echoes [J]. Phys Rev, 1950, 80: 580-594. [18] Novikov DS, Fieremans E, Jespersen SN, et al. Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation [J]. NMR in Biomed, 2019, 32: e3998. [19] Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging [J]. Magn Reson Med, 2005, 53: 1432-1440. [20] Jensen JH, Hui ES, Helpern JA. Double-pulsed diffusional kurtosis imaging [J]. NMR Biomed, 2014, 27(4): 363-370. [21] Hui ES, Jensen JH. Double-pulsed diffusional kurtosis imaging for the in vivo assessment of human brain microstructure [J]. NeuroImage, 2015, 120: 371-381. [22] Behrens TE, Woolrich MW, Jenkinson M, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging [J]. Magn Reson Med, 2003, 50: 1077-1088. [23] Assaf Y, Basser PJ. Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain [J]. Neuroimage, 2005, 27: 48-58. [24] Assaf Y, Freidlin RZ, Rohde GK, et al. New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter[J]. Magn Reson Med, 2004, 52: 965-978. [25] Behrens TE, Johansen-Berg H, Jbabdi S, et al. Probabilistic tractography with multiple fiber orientations: What can we gain? [J]. NeuroImage, 2007, 34: 144-155. [26] Tournier JD, Calamante F, Connelly A. Robust determination of the fiber orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution [J]. NeuroImage, 2007, 35: 1459-1472. [27] Assaf Y, Blumenfeld-Katzir T, Yovel Y, et al. AxCaliber: A method for measuring axon diameter distribution from diffusion MRI [J]. Magn Reson Med, 2008, 59: 1347-1354. [28] Alexander DC, Hubbard PL, Hall MG, et al. Orientationally invariant indices of axon diameter and density from diffusion MRI [J]. NeuroImage, 2010, 52: 1374-1389. [29] Zhang Hui, Schneider T, Wheeler-Kingshott CA, et al. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain [J]. NeuroImage, 2012, 61(4): 1000-1016. [30] Tariq M, Schneider T, Alexander DC, et al. Bingham-NODDI: Mapping anisotropic orientation dispersion of neurites using diffusion MRI [J]. NeuroImage, 2016, 133: 207-223. [31] Kaden E, Kn¨osche TR, Anwander A. Parametric spherical deconvolution: Inferring anatomical connectivity using diffusion MR imaging [J]. NeuroImage, 2007, 37: 474-488. [32] Sotiropoulos SN, Behrens TE, Jbabdi S. Ball and rackets: Inferring fiber fanning from diffusion-weighted MRI [J]. NeuroImage, 2012, 60: 1412-1425. [33] Zucchelli M, Descoteaux M, Menegaz G. NODDI-SH: A computational efficient NODDI extension for fODF estimation in diffusion MRI [EB/OL]. https://arxiv.org/abs/1708.08999, 2017-08-28/ 2017-09-01 [34] Daducci A, Canales-Rodríguez EJ, Zhang Hui, et al. Accelerated microstructure imaging via convex optimization (AMICO) from diffusion MRI data [J]. NeuroImage, 2015, 105: 32-44. [35] Harms RL, Fritz FJ, Tobisch A, et al. Robust and fast nonlinear optimization of diffusion MRI microstructure models [J]. NeuroImage, 2017, 155: 82-96. [36] Farooq H, Xu Junqian, Nam JW, et al. Microstructure imaging of crossing (MIX) white matter fibers from diffusion MRI [J]. Sci Rep, 2016, 6: 1-9. [37] Shemesh N, Jespersen SN, Alexander DC, et al. Conventions and nomenclature for double diffusion encoding NMR and MRI [J]. Magn Reson Med, 2016, 75: 82-87. [38] Baron CA, Beaulieu C. Oscillating gradient spin-echo (OGSE) diffusion tensor imaging of the human brain [J]. Magn Reson Med, 2014, 72: 726-736. [39] Fan Q, Witzel T, Nummenmaa A, et al. MGH-USC Human Connectome Project datasets with ultra-high B-value diffusion MRI [J]. NeuroImage, 2016: 1108-1114. [40] Van Essen DC, Smith SM, Barch DM, et al. The WU-Minn human connectome project: An overview[J]. Neuroimage, 2013, 80: 62-79. [41] Alfaro-Almagro F. Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank [J]. NeuroImage, 2018, 166: 400-424. [42] Rutger F, Demian W, Rachid D, et al. The Dmipy Toolbox: Diffusion MRI multi-compartment modeling and microstructure recovery made easy [J]. Front Neuroinform, 2019, 13: 64. [43] Hernandez-Fernandez M, Reguly I, Jbabdi S, et al. Using GPUs to accelerate computational diffusion MRI: From microstructure estimation to tractography and connectomes [J]. NeuroImage, 2019, 188: 598-615. [44] Cook PA, Bai Y, Nedjati-Gilani S, et al. Camino: Open-source diffusion-MRI reconstruction and processing [C]//The 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine. Seattle: International Society for Magnetic Resonance in Medicine, 2006:27592759. [45] Yeh F, Li Liu, Hitchens TK, et al. Mapping immune cell infiltration using restricted diffusion MRI [J]. Magn Reson Med, 2017, 77: 603-612. [46] Karmacharya S, Gagoski B, Ning Lipeng, et al. Advanced diffusion imaging for assessing normal white matter development in neonates and characterizing aberrant development in congenital heart disease [J]. NeuroImage Clin, 2018, 19: 360-373. [47] Kelly CE, Thompson DK, Chen Jian, et al. Axon density and axon orientation dispersion in children born preterm [J]. Hum Brain Mapp, 2016, 37(9): 3080-3102. [48] Wen Qiuting, Mustafi SM, Risacher SL, et al. White matter alterations in early-stage Alzheimer's disease: A tract-specific study [J]. Alzheimers Dement, 2019, 11: 576-587. [49] Parker TD, Slattery CF, Zhang Jiaying, et al. Cortical microstructure in young onset Alzheimer's disease using neurite orientation dispersion and density imaging [J]. Hum Brain Mapp, 2018, 39: 3005-3017. [50] Wang Zhenxiong, Zhang Shun, Liu Chengxia, et al. A study of neurite orientation dispersion and density imaging in ischemic stroke [J]. Magnetic Resonance Imaging, 2019, 57: 28-33. [51] Mastropietro A, Rizzo G, Fontana L, et al. Microstructural characterization of corticospinal tract in subacute and chronic stroke patients with distal lesions by means of advanced diffusion MRI [J]. Neuroradiology, 2019, 61: 1033-1045. [52] Irie R, Tsuruta K, Hori M, et al. Neurite orientation dispersion and density imaging for evaluation of corticospinal tract in idiopathic normal pressure hydrocephalus [J]. Jpn J Radiol, 2017, 35(1): 25-30. [53] Wen Q, Kelley DA, Banerjee S, et al. Clinically feasible NODDI characterization of glioma using multiband EPI at 7 T [J]. NeuroImage Clin, 2015, 9:291-299. [54] Maximov II, Tonoyan AS, Pronin IN. Differentiation of glioma malignancy grade using diffusion MRI [J]. Physica Medica, 2017, 40:24-32. [55] Li Shihui. Jiang Rifeng, Zhang Ju, et al. Application of neurite orientation dispersion and density imaging in assessing glioma grades and cellular proliferation [J]. World Neurosurgery, 2019, 131:247-254. [56] LeCun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521: 436-444. [57] Yasaka K, Akai H, Kunimatsu A, et al. Deep learning with convolutional neural network in radiology [J]. Japanese Journal of Radiology, 2018, 36(4): 257-272. [58] Lundervold A S, Lundervold A. An overview of deep learning in medical imaging focusing on MRI [J]. Zeitschrift Fur Medizinische Physik, 2019, 29(2): 102-127. [59] Golkov V, Dosovitskiy A, Sperl JI, et al. Q-space deep learning: Twelve-fold shorter and model-free diffusion MRI scans [J]. IEEE Trans Med Imaging, 2016, 35(5): 1344-1351. [60] Gibbons EK, Hodgson KK, Chaudhari AS, et al. Simultaneous NODDI and GFA parameter map generation from subsampled Q-space imaging using deep learning [J]. Magn Reson Med. 2019, 81: 2399-2411. [61] Nath V, Schilling KG, Parvathaneni P, et al. Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI [J]. Magnetic Resonance Imaging, 2019: 220-227. [62] Wang Zhangyang, Qing Ling, Huang TS, et al. Learning deep e0 encoders [EB/OL]//arXiv.1509.00153v2,2015-11-22/2020-04-20. [63] Zhang Jian, Ghanem B. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing [C]// The IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018, 1828-1837. [64] Ye Chuyang. Estimation of tissue microstructure using a deep Network inspired by a sparse reconstruction framework [C] // Information Processing in Medical Imaging. Boone: Cham Springer, 2017: 269-298. [65] Ye Chuyang. Tissue microstructure estimation using a deep network inspired by a dictionary-based framework [J]. Medical Image Analysis, 2017, 42: 288-299. [66] Ye Chuyang, Li Xiuli, Chen Jingnan. A deep network for tissue microstructure estimation using modified LSTM units [J]. Medical Image Analysis, 2019, 55: 49-64. [67] Ye Chuyang, Li Yuxing, Zeng Xiangzhu, et al. An improved deep network for tissue microstructure estimation with uncertainty quantification [J]. Medical Image Analysis, 2020,61:101650. [68] Tournier JD. Diffusion MRI in the brain - Theory and concepts [J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2019, 112: 1-16. [69] Zhang H, Hubbard PL, Parker GJ, et al. Axon diameter mapping in the presence of orientation dispersion with diffusion MRI [J]. NeuroImage, 2011, 56(3): 1301-1315. [70] Dyrby TB, Gaard LV, Hall M, et al. Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI [J]. Magnetic Resonance in Medicine, 2013, 70(3): 711-721. [71] Lee S, Nguyen C, Yoon J, et al. Three-dimensional cardiomyocytes structure revealed by diffusion tensor imaging and its validation using a tissue-clearing technique [J]. Scientific Reports, 2018, 8:6640. [72] Slator PJ, Hutter J, Mccabe L, et al. Placenta microstructure and microcirculation imaging with diffusion MRI [J]. Magnetic Resonance in Medicine, 2018, 80(2): 756-766. [73] Saito K, Tajima Y, Harada TL, et al. Diffusion-weighted imaging of the liver: Current applications [J]. World Journal of Radiology, 2016, 8(11): 857-867. [74] Andrea L, Mikheev A, Rusinek H, et al. (2018), REnal Flow and Microstructure AnisotroPy (REFMAP) MRI in normal and peritumoral renal tissue [J]. Magnetic Resonance Imaging, 2019, 48: 188-197. [75] Berry DB. Non-invasive measurements of muscle microstructure using diffusion tensor imaging in active-duty marines [D]. San Diego: University of California at San Diego,2017. |
|
|
|