|
|
Optimization of Cryoprotectants Addition and Removal Protocols Using Microfluidic Chip |
Zhou Xinli1*, Du Yukun1, Yi Xingyue1, Dai Jianjun2, Zhang Defu2 |
1(Institute of Biothermal Technology, University of Shanghai for Science and Technology, Shanghai 200093, China) 2(Animal and Veterinary Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China) |
|
|
Abstract Cryoprotectants (CPA) addition and removal are essential steps in oocytes cryopreservation. In recent years, microfluidic chips have been used for addition and removal of CPA. The way of addition and removal in microfluidic chips will affect the survival rate and in vitro development of oocytes. In this paper, linear, convex and concave CPA loading or removal protocols were realized by adjusting injection models of microinjection pumps. Nine addition-removal combined protocols were achieved in the microfluidic system. The survival rate and in vitro development of oocytes with different CPA addition-removal protocols were investigated. Results showed that the survival rate (97.22%) and morula rate (46.03%) of porcine MII oocytes from concave loading-convex unloading protocol were significantly higher than that using other protocols(P < 0.05). There was a certain matching relationship between the addition and removal of CPA. This research provided a new solution for optimizing continuous addition-removal of CPA by microfluidic method.
|
Received: 03 May 2018
|
|
Corresponding Authors:
E-mail: zjulily@163.com
|
|
|
|
[1] Kuwayama M, Vajta G, Kato O, et al. Highly efficient vitrification method for cryopreservation of human oocytes[J]. Reprod Biomed Online, 2005, 11(3):300-308. [2] Mahmoud M, Shu J, Zhang XH, et al. Cryopreservation of mammalian oocytes and embryos:current problems and future perspectives [J]. Science China Life Sciences, 2014, 57(9): 903-914. [3] Song YS, Moon S, Hulli L, et al. Microfluidics for cryopreservation [J]. Lab on a Chip, 2009, 9 (13): 1874-1881. [4] Mullen SF, Li Mei, Li Yuan, et al. Human oocyte vitrification: The permeability of metaphase II Oocytes to water and ethylene glycol and the appliance toward vitrification [J]. Fertility and Sterility, 2008, 89 (6): 1812-1825. [5] Glass KKF, Longmire EK, Hubel A. Optimization of a microfluidic device for diffusion-based extraction of DMSO from a cell suspension[J]. International Journal of Heat and Mass Transfer, 2008, 51(23): 5749-5757. [6] Hanna J, Hubel A, Lemke E. Diffusion-based extraction of DMSO from a cell suspension in a three stream, vertical microchannel[J]. Biotechnology and Bioengineering, 2012, 109(9): 2316-2324. [7] Mata C, Longmire E, McKenna D, et al. Experimental study of diffusion-based extraction from a cell suspension[J]. Microfluidics and Nanofluidics, 2008, 5(4): 529-540. [8] 杨云,周新丽,戴建军,等. 微流控线性加载低温保护剂减少猪MⅡ期卵母细胞的渗透损伤[J]. 生物化学与生物物理进展, 2016, 43(6):616-623. [9] Heo YS, Lee HJ, Hassell BA, et al. Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform[J]. Lab on a Chip, 2011, 11(20): 3530-3537. [10] 解政鼎,马学虎,艾丹亭,等. 低温保护剂对神经干细胞球添加过程的模拟分析[J]. 化工学报, 2013, 64(11): 3956-3967. [11] 艾丹亭,马学虎,兰忠,等. 多组分冷冻保护剂导入神经干细胞球的传质模拟[J]. 高校化学工程学报, 2015,29 (1): 1-10. [12] 石颖. 神经干细胞的玻璃化冷冻保存研究[D]. 大连:大连理工大学, 2009. [13] 杨云,周新丽,戴建军,等. 冷冻保护剂添加-去除过程对猪MII期卵母细胞损伤研究[J]. 制冷学报, 2016, 37(5): 106-111. [14] 杨喜,吴静,刘丑生,等. 细胞松弛素B、温度、离心处理对猪卵母细胞OPS玻璃化冷冻的影响[J]. 内蒙古大学学报(自然科学版), 2013 (5): 525-529. [15] 张德福,朱良成,刘东,等. 猪卵母细胞冷冻保存研究[J]. 中国农业科学,2006(6): 1233-1240. [16] 田见晖,刘国世,曾申明,等. 电脉冲激活对体外成熟猪卵母细胞卵裂率和囊胚率的影响[J]. 农业生物技术学报, 2004, 12(4): 401-407. [17] 赵金凤.猪卵母细胞孤雌激活方法的研究[D]. 哈尔滨:东北农业大学, 2010. [18] 郝子悦. 猪卵母细胞体外成熟及孤雌激活的研究[D]. 扬州:扬州大学. 2008. [19] 罗婷,蒙丽娜,刘晓华,等. 哺乳动物附植前胚胎细胞凋亡的研究进展[J]. 中国畜牧兽医, 2012, 39(11): 125-128. |
[1] |
Liu Yan, Yang Qingzhen, Chen Xiaoming, Gu Fangwei, Zhang Hui. Fabrication of Organ-on-a-Chip by 3D Printing Technology[J]. Chinese Journal of Biomedical Engineering, 2020, 39(1): 97-108. |
[2] |
Peng Kun, Li Jing, Wang Sirui, Xia Jun, Qiao Aike. Research Progress on the Structure Design and Optimization of Biodegradable Stents[J]. Chinese Journal of Biomedical Engineering, 2019, 38(3): 367-374. |
|
|
|
|