|
|
Cerebral Cortex Functional Connection Analysis of Magnetic Stimulation at Neiguan Acupoint (PC6) Based on Complex Network |
Yin Ning1,2#, Dai Yangyang1,2, Sheng Hui1,2, Xu Guizhi1,2#* |
1(State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China) 2(Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China) |
|
|
Abstract Combined with magnetic stimulation technique, electroencephalogram (EEG) and traditional acupoint theory, the coordinated regulation process of cerebral cortex functional network evoked by acupoint stimulation was studied in this work. The EEG signals in resting state and magnetic stimulation at Neiguan (PC6) acupoint of 14 healthy subjects were reconstructed to determine the brain network nodes, using the group independent component analysis and standard low-resolution brain electromagnetic tomography. The correlation coefficient between the alpha-band power spectrums was calculated by the short-time Fourier transform and the cross-correlation method. Based on t-test and false discovery rate correction (FDR) the brain network connection edges (P<0.05, FDR corrected) were constructed. The functional connections of cerebral cortex were analyzed. Results showed that the functional connections of nodes in brain areas related to movement decreased by 22.9%, the functional connections of nodes in brain areas associated with emotion and memory increased by 93.8%, the functional connections of nodes in the frontal lobe and temporal lobe increased by 21.2% during magnetic stimulation. The topological structure changes of the cerebral cortex functional network caused by magnetic stimulation at PC6 are consistent with the function of the acupoint. This study provides new clues for revealing the mechanism of acupoint regulation.
|
Received: 26 April 2018
|
|
Corresponding Authors:
E-mail: gzxu@hebut.edu.cn
|
|
|
|
[1] Jiang Tianzi. Brainnetome: a new - ome to understand the brain and its disorders [J]. Neuroimage, 2013, 80(8): 263-272. [2] Boersma M, Smit D J, de Bie H M, et al. Network analysis of resting state EEG in the developing young brain: structure comes with maturation. [J]. Human Brain Mapping, 2015, 32(3): 413-425. [3] 孙传铸,白丽君,牛璇,等. 基于格兰杰因果分析的针刺不同效应阶段中枢神经传导通路研究 [J]. 磁共振成像, 2014, 5(6): 423-429. [4] Yi Guosheng, Wang Jiang, Han Chunxiao, et al. The modulation of brain functional connectivity with manual acupuncture in healthy subjects:An electroencephalograph case study [J]. Chinese Physics B, 2013, 22(2): 550-558. [5] 尹宁,徐桂芝,于洪丽,等. 磁刺激穴位对大脑功能网络的影响 [J]. 中国生物医学工程学报, 2013, 32(2): 184-190. [6] 尹宁,徐桂芝,周茜. 磁刺激穴位复杂脑功能网络构建与分析 [J]. 物理学报, 2013, 62(11): 559-566. [7] 于洪丽,徐桂芝,付灵弟,等. 基于脑电图的不同频率磁刺激内关穴脑网络分析 [J]. 中国生物医学工程学报, 2016, 35(6): 749-753. [8] 郭磊,王瑶,于洪丽,等. 基于近似熵的磁刺激穴位脑功能网络构建与分析 [J]. 电工技术学报, 2015, 30(10): 31-38. [9] 邢阳阳,耿跃华,张欣,等. 磁刺激光明穴的脑电响应的脑功能网络构建与分析 [J]. 中国生物医学工程学报, 2016, 35(6): 684-690. [10] Chen JL, Ros T, Gruzelier JH. Dynamic changes of ICA-derived EEG functional connectivity in the resting state [J]. Human Brain Mapping, 2013, 34(4): 852-868. [11] 杨剑,陈书燊,皇甫浩然,等. 静息态脑电信号动态功能连接分析 [J]. 物理学报, 2015, 64(5): 374-383. [12] 田宝凤,周媛媛,王悦,等. 基于独立成分分析的全波核磁共振信号噪声滤除方法研究 [J]. 物理学报, 2015, 64(22): 442-453. [13] Schmithorst VJ, Holland SK. Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data [J]. Journal of Magnetic Resonance Imaging Jmri, 2004, 19(3): 365-368. [14] 李健,陈国镇,陈春晓. 基于脑电信号溯源分析的观看3D电视导致大脑疲劳研究 [J]. 中国生物医学工程学报, 2017, 36(1): 46-52. [15] 王春方, 孙长城, 张希, 等. 基于偏定向相干性(PDC)的脑卒中后抑郁症患者脑网络研究[J]. 中国生物医学工程学报, 2015, 34(4): 385-391. [16] Wei HL, An J, Zeng LL, et al. Altered functional connectivity among default, attention, and control networks in idiopathic generalized epilepsy. [J]. Epilepsy and Behavior, 2015, 46: 118-125. [17] Salvador R. Neurophysiological Architecture of Functional Magnetic Resonance Images of Human Brain [J]. Cerebral Cortex, 2005, 15(9): 1332-1342. [18] Benjamini Y, Yekutieli D. The Control of the False Discovery Rate in Multiple Testing Under Dependency [J]. The Annals of Statistics, 2001, 29(4): 1165-1188. [19] Choi MH, Kim HS, Baek JH, et al. Differences in Activation Area Within Brodmann Area 2 Caused by Pressure Stimuli on Fingers and Joints [J]. Medicine, 2015, 94(38): e1657. [20] 李文文,徐桂芝,陈小刚,等. 磁刺激内关穴的脑电源定位分析 [J]. 中国生物医学工程学报, 2011, 30(1): 22-26. [21] 陈鹏,赵百孝,秦伟,等. 针刺大陵穴对大脑皮质的影响—MRI研究 [J]. 中国针灸, 2008, 28(6): 429-432. |
[1] |
Liu Xiaoya, Liu Shuang, Guo Dongyue, An Xingwei, Yang Jiajia, Ming Dong. Research Progress in Electroencephalography of Depression[J]. Chinese Journal of Biomedical Engineering, 2020, 39(3): 351-361. |
[2] |
Wang Lei, Zhang Tianheng, Guo Miaomiao, Xu Guizhi. EEG Signal Analysis of Fatigue Caused by Virtual Reality Immersive Visual Experience[J]. Chinese Journal of Biomedical Engineering, 2020, 39(2): 160-169. |
|
|
|
|