|
|
Research on Shockable Rhythm Detection Algorithm Based on Machine Learning |
Zheng Yue, Hou Xingyu, Wu Xiaomei#* |
(School of Information Science and Engineering, Fudan University, Shanghai 200433,China) |
|
|
Abstract Automatic external defibrillator (AED) is an important device in saving patients with cardiac arrest (SCA). Shockable advice algorithm (SAA) is the key technology of AED. In this work, our model was trained with a data set including 2 024 segments of shockable rhythms (SHR) and 7 884 segments of non-shockable rhythms (NSHR). We proposed a SAA based on machine learning. Combining 6 effective features selected from 32 features such as time domain, frequency domain and complexity, support vector machine was employed to classify SHR and NSHR. After 500 experiments, the mean value ±standard deviation of sensitivity of the algorithm was 97.62±0.18%, the specificity was 99.15±0.04%, and the accuracy was 98.79±0.08%. The results showed that the SAA proposed in this paper met the requirements of American Heart Association for SAA performance in AED, and it can be used as an AED algorithm module for automatic discrimination of SHR.
|
Received: 22 February 2022
|
|
Corresponding Authors:
*E-mail: xiaomeiwu@fudan.edu.cn
|
About author:: #Member, Chinese Society of Biomedical Engineering |
|
|
|
[1] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6):25-25. [2] Kerber R, Becker LB, Bourland JD, et al. Automatic external defibrillators for public access defibrillation: recommendations for specifying and reporting arrhythmia analysis algorithm performance, incorporation of new waveforms, and enhancing safety[J]. Circulation ,1997,95(6):1677-1682. [3] Acharya UR, Fujita H, Oh SL, et al. Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network[J]. Future Generation Computer Systems,2018, 79(3):952-959. [4] Nguyen MT, Nguyen BV, Kim K. Deep feature learning for sudden cardiac arrest detection in automated external defibrillators[J]. Scientific Reports, 2018, 8(1): 17196. [5] Alonso-Atienza F, Morgado E, Fernandez-Martinez L, et al. Detection of life-threatening arrhythmias using feature selection and support vector machines[J]. IEEE Trans Biomed Eng, 2014, 61(3):832-840. [6] Li Qiao, Rajagopalan C, Clifford GD. Ventricular fibrillation and tachycardia classification using a machine learning approach[J]. IEEE Transactions on Biomedical Engineering, 2013, 61(6): 1607-1613. [7] 范小彪. 植入式除颤器的个体化优化及可电击心律检测算法研究[D].成都:电子科技大学,2020. [8] 余明,袁晶,张广,等.基于机器学习的心肺复苏干扰下心电节律识别算法研究[J].中国医疗设备,2021,36(6):31-34. [9] Carlos F, Unai I, Eduardo M, et al. Machine learning techniques for the detection of shockable rhythms in automated external defibrillators[J]. PLoS ONE, 2016, 11(7): e0159654. [10] Ayala U, Irusta U, Ruiz J, et al. Fully automatic rhythm analysis during chest compression pauses[J]. Resuscitation, 2015,89:25-30. [11] 郑鑫. 基于小波变换的心电信号去噪识别的研究与实现[D].北京:北京邮电大学,2017. [12] 杨晓利. 基于体表ECG的ShR信号检测研究[D].长沙:中南大学,2011. [13] Strohmenger HU, Lindner KH, Lurie KG, et al. Frequency of ventricular fibrillation as a predictor of defibrillation success during cardiac surgery[J]. Anesthesia & Analgesia, 1994, 79(3): 434-438. [14] Anas EM, Lee SY, Hasan MK. Sequential algorithm for life threatening cardiac pathologies detection based on mean signal strength and EMD functions[J]. BioMedical Engineering OnLine, 2010, 9(1):1-22. [15] 金大年. 室颤波形分析用于预测除颤结果的优化方法研究[D].重庆:第三军医大学,2017. [16] Watson JN, Addison PS, Clegg GR, et al. Wavelet transform-based prediction of the likelihood of successful defibrillation for patients exhibiting ventricular fibrillation[J]. Measurement ence and Technology, 2005, 16(10): L1-L6. [17] 洪俊标,蒋浩宇,何先梁,等.一种实用的可除颤节律识别算法[J].中国医疗设备,2019,34(1):25-29. [18] Li Qiao, Mark RG, Clifford GD. Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter[J]. Physiological Measurement, 2008, 29(1): 15-32. [19] Jekova I. Shock advisory tool: detection of life-threatening cardiacarrhythmias and shock success prediction by means of a common 13 parameter set[J]. Biomed Signal Process Control, 2007, 2(1): 25-33. [20] Jekova I, Krasteva V. Real time detection of ventricular fibrillation and tachycardia[J]. Physiological Measurement, 2004, 25(5): 1167-1178. [21] 余明. 胸外按压过程中伪迹抑制与心电节律辨识算法研究[D]. 北京:中国人民解放军军事医学科学院, 2017. [22] Thakor NV, Zhu Yisheng, Pan Kongyan. Ventricular tachycardia and fibrillation detection by a sequential hypothesis testing algorithm[J]. IEEE Trans Biomed Eng, 1990, 37: 837-843. [23] 张春云. 室颤信号的非线性检测研究[D].济南:山东师范大学, 2012. [24] Amann A, Tratnig R, Unterkofler K. Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators[J]. Biomed Eng Online, 2005, 4:60. [25] Barro S, Ruiz R, Cabello D, et al. Algorithmic sequential decision-making in the frequency domain for life threatening ventricular arrhythmias and imitative artefacts: a diagnostic system[J]. J Biomed Eng,1989,11(4):320-328. [26] Kuo S. Computer detection of ventricular fibrillation. Computers in cardiology[J]. IEEE Computer Society, 1978,9(5): 347-349. [27] Li Haiyan, Han Wenguang, Hu Chao, et al. Detecting ventricular fibrillation by fast algorithm of dynamic sample entropy[C]//IEEE International Conference on Robotics & Biomimetics. Guilin: IEEE, 2009: 1105-1110. [28] Amann A, Tratnig R, Unterkofler K. A new ventricular fibrillation detection algorithm for automated external defibrillators[C]//Computers in Cardiology. Lyon: IEEE, 2006:559-562. [29] Lempel A, Ziv J. On the complexity of finite sequences[J]. IEEE Trans Inf Theory,1976, 22(1):75-81. [30] Urbanowicz RJ, Meeker M, La Cava W, et al. Relief-based feature selection: introduction and review[J]. Journal of Biomedical Informatics, 2018, 85: 189-203. [31] 丁雪梅,王汉军,王炤光,等.基于改进ReliefF的无监督特征选择方法[J].计算机系统应用,2018,27(3):149-155. [32] Artzai P, Irusta U, et al. Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia[J]. PLoS ONE, 2019, 14(5): e216756. [33] Tripathy RK, Sharma LN, Dandapat S. Detection of shockable ventricular arrhythmia using variational mode decomposition[J]. J Med Syst, 2016, 40(4):79. [34] Figuera C, Irusta U, Morgado E, et al. Machine learning techniques for the detection of shockable rhythms in automated external defibrillators[J]. PLoS ONE, 2016, 11(7): e0159654. [35] 罗美荣.自适应窗口的可除颤节律自动检测[D].广州:南方医科大学,2020. [36] Khadar SA, Tabatabaey-Mashadi N, Daliri GM. A simple realtime algorithm for automatic external defibrillator[J]. Biomedical Signal Processing and Control, 2019, 51: 277-284. [37] Nguyen MT, Van Nguyen B, Kim K. Shockable rhythm diagnosis for automated external defibrillators using a modified variational mode decomposition technique[J]. IEEE Transactions on Industrial Informatics, 2017, 13(6): 3037-3046. [38] Rea T, Kudenchuk PJ, Sayre MR, et al. Out of hospital cardiac arrest: past, present, and future[J]. Resuscitation, 2021, 165:101-109. |
[1] |
Jiang Yuchen, Zhang Yue, Cha Xingzeng, Su Ye, Lai Dakun. Single-Lead ECG Chest Band Based on Multi-Layer Screen Printing Flexible Dry Electrode[J]. Chinese Journal of Biomedical Engineering, 2023, 42(5): 636-640. |
[2] |
Liu Guocai, Gu Dongdong, Liu Jinguang. Machine Learning Methods for Prediction of Dose Distribution and Response to Treatmentin Tumor Precision Radiotherapy: A Review[J]. Chinese Journal of Biomedical Engineering, 2022, 41(6): 744-758. |
|
|
|
|