|
|
Research Progress of Stereolithographic 3D Printing of Soft Tissue Engineering Scaffolds |
Xu Kehui, Li Jiaojiao, Li Xiangyu, Chen Jialong* |
(Teaching and Research Section of Dental Materials, Stomatologic Hospital & College, Anhui Medical University Anhui Province Key Laboratory of Oral Diseases Research, Hefei 230032,China) |
|
|
Abstract Stereolithographic 3D printing technology has characteristics of fast forming speed and high precision, which allow it to accurately control the size, shape and strength of 3D printing soft tissue scaffolds, complete the high matching customization, and effectively solve the huge gap of the soft tissue replacement. At present, the application scope of this technology depends on the properties of photosensitive materials. Firstly, it is necessary to have appropriate viscosities, curing times and curing shrinkage rates for accurately controlling the soft tissue scaffolds by stereolithographic 3D printing. Secondly, printing tissues need to meet the mechanical properties (such as strength, hardness, toughness) and good biocompatibility (such as promoting cell adhesion, proliferation and differentiation), which were directly affected by degradation, porosity and vascularization. This review discussed the performance requirements and the improvement methods and the trends of photosensitive materials, aiming to provide guidance and insights to the development of photosensitive printing materials for soft tissue engineering.
|
Received: 30 August 2018
|
|
|
|
|
[1] 连芩,李涤尘,陈成,等.面向组织工程化软组织的制造技术及增材制造[J].中国组织工程研究, 2014, 18(8):1263-1269. [2] 路丰军,洪雅真,王士斌.光固化打印及其打印材料改性的研究进展[J].应用化工, 2016, 45(8):1563-1570. [3] 高卓,陈晓婷,衣守志,等.打印技术及聚合物打印材料的研究进展[J].热固性树脂, 2016, 32(4):67-70. [4] Mondschein RJ,Kanitkar A,Williams CB,et al. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds[J]. Biomaterials, 2017, 140:170-188. [5] Morris VB,Nimbalkar S,Younesi M, et al. Mechanical properties,cytocompatibility and manufacturability of chitosan: PEGDA hybrid-gel scaffolds by stereolithography[J]. Annals of Biomedical Engineering, 2017, 45(1):286-296. [6] 王东峰.光固化成型打印材料应用研究[J].新型工业化, 2016, 6(12):59-63. [7] 刘海涛,莫建华,黄兵.一种光固化实体材料树脂[J].高分子材料化学与工程, 2009, 25(7):148-151. [8] Hadjichristidis N,Roovers JEL. Synthesis and solution properties of linear4-branched,and 6-branched star polyisoprenes[J].Journal of Polymer Science: Polymer Physics Edition, 1974, 12(12):2521-2533. [9] Stiriba SE,Kautz H,Frey H. Hyperbranched molecular nanocapsules:comparison of the hyperbranched architecture with the perfect linear analogue[J].Journal of the American Chemical Society, 2002, 124(33):9698-9699. [10] 王孝科,田敉.聚乙二醇改性环氧丙烯酸酯光固化树脂的研究[J].涂料工业, 2008, 38(5):19-23. [11] 张娜,陈媛,聂俊,等.光固化阳离子活性稀释剂研究进展[J].影像科学与光化学, 2016, 34(6):491-504. [12] 黄笔武,姜安坤,翁子骧,等.正丁基缩水甘油醚的合成及作为阳离子型固化稀释剂的研究[J].精细石油化工, 2010, 27(4):23-26. [13] Zhao Y, Yang M, Ding R, et al. Preparation of a hybrid photopolymer for stereolithography[C]//The 5th International Conference on Advanced Design and Manufacturing Engineering. Shenzhen:Atlantis Press, 2015:1628-1632. [14] 姜丹丹. 光固化3DP材料的增韧改性及其收缩性能研究[D]. 南京:南京航空航天大学,2016. [15] 袁慧羚.光固化快速成型工艺的精度研究与控制[D]. 南昌:南昌大学,2010. [16] Verstegen EJK,Kloosterboer JG,Lub J. Synthesis and photopolymerization of oxetanes derived from bisphenol A[J]. Journal of Applied Polymer Science, 2005, 98(4):1697-1707. [17] 张娜,谢超,何惠明. 新型光固化树脂聚合收缩和机械性能的研究[J]. 口腔医学研究, 2018, 34(5):505-508. [18] Masters KS,Shah DN,Walker G,et al. Designing scaffolds for valvular interstitial cells: cell adhesion and function on naturally derived materials[J]. Journal of Biomedical Materials Research Part A, 2004, 71(1):172-180. [19] Meyer W,Engelhardt S,Novosel E,et al. Soft Polymers for building up small and smallest blood supplying systems by stereolithography[J]. Journal of Functional Biomaterials, 2012, 3(2):257-268. [20] 张吉,姚跃飞. 软质光固化树脂的制备及其性能研究[J]. 浙江理工大学学报(自然科学版), 2017, 35(7):647-651. [21] Xu Jicheng,Jiang Yan,Zhang Tao,et al. Synthesis of UV-curing waterborne polyurethane-acrylate coating and its photopolymerization kinetics using FT-IR and photo-DSC methods[J]. Progress in Organic Coatings, 2018, 122:10-18. [22] Voet VSD,Strating T,Schnelting GHM,et al. Biobasedacrylatephotocurable resin formulation for stereolithography 3D printing[J]. ACS Omega, 2018, 3(2):1403-1408. [23] Gorsche C,Seidler K,Knaack P,et al. Rapid formation of regulated methacrylate networks yielding tough materials for lithographybased 3D printing[J]. Polymer Chemistry, 2016, 7(11):2009-2014. [24] Manapat JZ,Chen Qiyi,Ye Piaoran,et al. 3D Printing of polymer nanocomposites via stereolithography[J]. Macromolecular Materials and Engineering, 2017, 302(9):1600553. [25] Occhetta P,Visone R,Russo L,et al. VA-086 methacrylate gelatine photopolymerizable hydrogels: A parametric study for highly biocompatible 3D cell embedding[J]. Journal of Biomedical Materials Research, 2015, 103(6):2109-2117. [26] Williams CG,Malik AN,Kim TK,et al. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation[J]. Biomaterials, 2005, 26(11):1211-1218. [27] 王雪欣,张明谏,李小兵,等. 生物打印在组织器官类似物制造领域的应用[J]. 中国组织工程研究, 2018, 22(10):1611-1617. [28] Lin Hang,Zhang Dongning,Alexander PG,et al. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture[J]. Biomaterials, 2013, 34(2):331-339. [29] 宋彩雨,王磊,孙明明,等. 活性稀释剂对紫外光固化树脂性能的影响[J]. 化学与黏合, 2017, 39(2):94-111. [30] ShieMingyou,Chang Wenching,Wei Liju,et al. 3D printing of cytocompatible water-based light-cured polyurethane with hyaluronic acid for cartilage tissue engineering applications[J]. Materials, 2017, 10(2):136. [31] Poldervaart MT,Goversen B,De Ruijter M,et al. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity[J]. PLoS ONE, 2017, 12(6):e0177628. [32] Bobula T,Buffa R,Hermannová M,et al. A novel photopolymerizable derivative of hyaluronan for designed hydrogel formation[J]. Carbohydrate Polymers, 2017, 161:277-285. [33] Sun Jing,Xiao Wenqian,Tang Yajun,et al. Biomimetic interpenetrating polymer network hydrogels based on methacrylated alginate and collagen for 3D pre-osteoblast spreading and osteogenic differentiation[J]. Soft Matter, 2012, 8(8):2398-2404. [34] Gilding DK,Reed AM. Biodegradable polymers for use in surgery poly(-glycolic)-poly(lactic acid) homo and co-polymers2.Invitro degradation[J]. Polymer, 1981, 22(4):494-498. [35] Elomaa L,Kang Yunqing,Seppälä JV,et al. Biodegradable photocrosslinkable poly(depsipeptid-eco-ε-caprolactone) for tissue engineering: Synthesis,characterization,and In vitro evaluation[J]. Polymer Chemistry, 2014, 52(23):3307-3315. [36] Ozcelik B,Palmer J,Ladewig K,et al. Biocompatible porous polyester-ether hydrogel scaffolds with cross-linker mediated biodegradation and mechanical properties for tissue augmentation[J]. Polymers, 2018, 10(2):179. [37] Agrawal CM,Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering[J]. Journal of Biomedical Materials Research, 2015, 5(2):141-150. [38] 冯学鹏,简鹏,丁琳,等. 基于聚丙交酯的可固化型可生物降解聚氨酯丙烯酸酯的合成和表征[J]. 高分子学报, 2016(8):1062-1071. [39] Salber J,Gräter S,Harwardt M,et al. Influence of different ECM mimetic peptide sequences embedded in a nonfouling environment on the specific adhesion of human-skin keratinocytes and fibroblasts on deformable substrates[J]. Small, 2007, 3(6):1023-1031. [40] West JL,Hubbell JA. Polymeric biomaterials with degradation sites for proteases involved in cell migration[J]. Macromolecules, 1999, 32(1):241-244. [41] Mann BK,Gobin AS,Tsai AT,et al. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering[J]. Biomaterials, 2001, 22(22):3045-3051. [42] 赵宁波.透明质酸复合骨替代材料促进成骨效果及机制研究[D]. 西安:第四军医大学,2016. [43] Mu X,Bertron T,Dunn C,et al. Porous polymeric materials by 3D printing of photocurable resin[J]. Materials Horizons, 2017, 4(3): 442-449. [44] 张旭婧,许燕,周建平,等. 骨组织工程支架的不同孔隙率对成形性能的影响分析[J]. 机械设计与研究, 2016, 32(5):151-154. [45] Gauvin R,Chen Yingchieh,Lee J W,et al. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography[J]. Biomaterials, 2012, 33(15):3824-3834. [46] Koroleva A,Gittard S,Schlie S,et al. Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization-micromolding technique[J]. Biofabrication, 2012, 4(1):015001. [47] Kufelt O,El-Tamer A,Sehring,et al. Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization[J]. Acta Biomaterialia, 2015, 18:186-195. [48] Wu W,Deconinck A,Lewis JA. Omnidirectional printing of 3D microvascular networks[J]. Advanced Materials, 2011, 23(24): H178-H183. [49] Jain RK. Molecular regulation of vessel maturation[J]. Nature Medicine, 2003, 9(6): 685-693. [50] West JL,Moon JJ. Vascularization of engineered tissues: approaches to promote angiogenesis in biomaterials[J]. Current Topics in Medicinal Chemistry, 2008, 8(4): 300-310. [51] Ishihara M,Obara K,Ishizuka T,et al. Controlled release of fibroblast growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivo vascularization[J]. Journal of Biomedical Materials Research Part A, 2003, 64(3): 551-559. [52] 郑耀臣,柳志青,任冬雪. 紫外光固化光敏稀释剂的合成及性能研究[J]. 烟台大学学报(自然科学与工程版), 2006, 19(4):300-306. [53] 李振,张云波,张鑫鑫. 光敏树脂和光固化打印技术的发展及应用[J]. 理化检验-物理分册, 2016, 52(10):686-712. [54] Chien HW,Tsai WB,Jiang S. Direct cell encapsulation in biodegradable and functionalizable carboxybetaine hydrogels[J]. Biomaterials, 2012, 33(23):5706-5712. [55] Tanodekaew S,Channasanon S,Uppanan P. Preparation and degradation study of photocurable oligolactide-HA composite: A potential resin for stereolithography application[J]. Journal of Biomedical Research, 2014, 102(3):604-611. [56] Aliabouzar M,Zhang GL,Sarkar K. Acoustic and mechanical characterization of 3D printed scaffolds for tissue engineering applications[J]. Biomedical Materials, 2018, 13(5):055013. [57] Zhu W,Qu X,Zhu J,et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture[J]. Biomaterials, 2017, 124: 106-115. |
[1] |
Xu Jie, Wang Xunheng, Li Lihua. Investigating Brain Networks for ADHD Children Based on Phase Synchronization of Resting State fMRI[J]. Chinese Journal of Biomedical Engineering, 2020, 39(3): 265-270. |
[2] |
Li Baoming, Hu Jiarui, Xu Haijun, Wang Cong, Jiang Yanni, Zhang Zhihong, Xu Jun. Deep Cascaded Network for Automated Detection of Cancer MetastasisRegion from Whole Slide Image of Breast Lymph Node[J]. Chinese Journal of Biomedical Engineering, 2020, 39(3): 257-264. |
|
|
|
|