|
|
Progress of Alzheimer′s Disease Research Based on PET Imaging |
Wang Zhiqiang1, Yao Xufeng2*, Huang Gang2 |
1.(Institute of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200082, China) 2.(Institute of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201308, China) |
|
|
Abstract Positron emission tomography (PET) and magnetic resonance imaging (MRI) have been widely used for the diagnosis of AD in the clinic. 18F-labeled fluorodeoxyglucose positron emission tomography (FDG PET) and beta-amyloid positron emission tomography (Aβ PET) are two commonly used diagnostic techniques in PET and play an important role in the diagnosis of AD. This article described the application of FDG PET, Aβ PET and joint imaging from two aspects of diagnostic effect evaluation and identification of dementia types. In addition, we compared the diagnosis of AD for PET and MRI imaging and summarized the existing problems. At the same time, new developments of AD diagnosis were expected.
|
Received: 15 December 2017
|
|
|
|
|
[1] Organization WH. Dementia: A public health priority[J]. Perspect Public Health, 2012, 5(3):123-125. [2] Wong DF, Rosenberg PB, Zhou Yun, et al. In vivo imaging of amyloid deposition in alzheimer disease using the radioligand 18F-AV-45 (Flobetapir F 18)[J]. Journal of Nuclear Medicine, 2010, 51(6):913-931. [3] Vandenberghe R, Van Laere K, Ivanoiu A, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial[J]. Annals of Neurology, 2010, 68(3):319-329. [4] Ong K, Villemagne VL, Langdon N, et al. Assessment of Aβ deposition in mild cognitive impairment with 18F-Florbetaben[J]. Alzheimers & Dementia, 2010, 6(4):S26-S26. [5] Mosconi L, Tsui WH, Herholz K, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer′s disease, and other dementias.[J]. Journal of Nuclear Medicine, 2008, 49(3):390-398. [6] 陶霖,石吉乐,孙洪赞,等. 18 F-FDG PET在阿尔茨海默病临床评估中的初步应用[J]. 中华脑科疾病与康复杂志(电子版), 2016,6(3):142-146. [7] 周梦溪. 阿尔茨海默病脑组织糖代谢改变的相关研究[D]. 大连:大连医科大学,2016. [8] Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in alzheimer′s disease with Pittsburgh Compound-B[J]. Annals of Neurology, 2010, 55(3):306-319. [9] Fu Liping, Liu Linwen, Zhang Jinming, et al. Brain network alterations in Alzheimer′s disease identified by early-phase PIB-PET[J]. Contrast Media &Molecular Imaging, 2018, 2018(8):1-10. [10] Sabri O, Gertz HJ, Dresel S, et al. Florbetaben for beta-amyloid brain PET in Alzheimer′s disease: Results of a multicenter phase 2 trial[J]. Alzheimers & Dementia, 2010, 6(4):S70-S70. [11] Pagani M, Nobili F, Morbelli S, et al. Early identification of MCI converting to AD: A FDG PET study[J]. European Journal of Nuclear Medicine & Molecular Imaging, 2017,44(12):2042-2052. [12] Morbelli S, Bauckneht M, Arnaldi D, et al. 18F-FDG PET diagnostic and prognostic patterns do not overlap in Alzheimer′s disease (AD) patients at the mild cognitive impairment (MCI) stage[J]. European Journal of Nuclear Medicine & Molecular Imaging, 2017,44(12):2073-2083. [13] Foster NL, Heidebrink JL, Clark CM, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer′s disease[J]. Brain A Journal of Neurology, 2007, 130(10):2616-2635. [14] Ong KT, Villemagne VL, Bahar-Fuchs A, et al. Aβ imaging with 18F-florbetaben in prodromal Alzheimer′s disease: A prospective outcome study[J]. Journal of Neurology Neurosurgery & Psychiatry, 2015, 86(4):431-436. [15] Namiki C, Takita Y, Iwata A, et al. Imaging characteristics and safety of florbetapir ((18)F) in Japanese healthy volunteers, patients with mild cognitive impairment and patients with Alzheimer′s disease[J]. Annals of Nuclear Medicine, 2015, 29(7):570-581. [16] Jiménez-Bonilla JF, Banzo I, De AM, et al. Amyloid imaging with 11C-PIB in patients with cognitive impairment in a clinical setting: A visual and semiquantitative analysis[J]. Clinical Nuclear Medicine, 2016, 41(1):e18-e23. [17] Rabinovici GD, Rosen HJ, Alkalay A, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD[J]. Neurology, 2011, 77(23):2034-2042. [18] 陶霖,郑东明. PET显像技术在阿尔茨海默病诊断中的应用[J]. 中国临床医学影像杂志,2016,27(5):367-369. [19] 李毅. FDG和PiB PET显像在Alzheimer′s Disease早期诊断及临床分型中的应用研究[D].济南:山东大学,2015. [20] Hatashita S, Yamasaki H. Diagnosed mild cognitive impairment due to Alzheimer′s disease with PET biomarkers of beta amyloid and neuronal dysfunction[J]. PLoS ONE, 2013, 8(6):e66877-e66883. [21] 王颖,高硕,蔡莉,等. ~(18)F-FDG和~(11)C-PIBPET联合脑显像对阿尔茨海默病及额颞痴呆的鉴别诊断价值初探[J]. 天津医药,2013,41(5):401-403. [22] Iaccarino L, Chiotis K, Alongi P, et al. A cross-validation of FDG- and Amyloid-PET biomarkers in mild cognitive impairment for the risk prediction to dementia due to Alzheimer′s disease in a clinical setting.[J]. Journal of Alzheimer′s Disease, 2017, 59(2):603-614. [23] Brück A, Virta J R, Koivunen J, et al. [11C]PIB, [18F]FDG and MR imaging in patients with mild cognitive impairment.[J]. European Journal of Nuclear Medicine & Molecular Imaging, 2013, 40(10):1567-1572. [24] Brendel M, Schnabel J, Schönecker S, et al. Additive value of amyloid-PET in routine cases of clinical dementia work-up after FDG-PET[J]. European Journal of Nuclear Medicine & Molecular Imaging, 2017, 44(13):2239-2248. [25] Faturrahman M, Wasito I, Hanifah N, et al. Structural MRI classification for alzheimer′s disease detection using deep belief network[C]//International Conference on Information & Communication Technology and System. Depork: IEEE, 2018:37-42. [26] Islam J, Zhang Yanqing. Brain MRI analysis for Alzheimer′s disease diagnosis using an ensemble system of deep convolutional neural networks[J]. Brain Informatics, 2018, 5(2):2-2. [27] Demirhan A. Classification of structural MRI for detecting Alzheimer′s disease[J]. International Journal of Intelligent Systems and Applications in Engineering, 2016, 4(1): 195-198. [28] Steketee RME, Bron EE, Meijboom R, et al. Early-stage differentiation between presenile Alzheimer′s disease and frontotemporal dementia using arterial spin labeling MRI[J]. European Radiology, 2016, 26(1):244-253. [29] 徐盼盼,杨宁,李淑龙. 基于支持张量机算法和3D脑白质图像的阿尔兹海默症诊断[J]. 中山大学学报(自然科学版),2018, 57(2):52-60. [30] Li Fan, Cheng Danni, Liu Manhua. Alzheimer′s disease classification based on combination of multi-model convolutional networks[C]// Imaging Systems and Techniques (IST). Beijing: IEEE,2017:1-5. [31] Yang Chenhui, Qiu Qi, Hou Chaoqun, et al. A coupled feature representation based MRI biomarker for Alzheimer′s disease prediction[C]//Systems and Informatics(ICSAI). Hangzhou: IEEE, 2017:726-731. [32] Jack CR Jr, Albert MS, Knopman DS, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer′s Association workgroups on diagnostic guidelines for Alzheimer′s disease[J]. Alzheimer′s & Dementia, 2011, 7(3):257-262. [33] Lu Donghuan, Popuri K, Ding GW, et al. Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer′s disease using structural MR and FDG-PET images[J]. Scientific Reports, 2018, 8(1):1-13. [34] Shi Jun, Zhen Xiao, Li Yan, et al. Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of alzheimer′s disease[J]. IEEE Journal Biomedical And Health Informatics, 2018,22(1):173-183. [35] Ortiz A, Lozano F, Gorriz JM, et al. Discriminative Sparse Features for Alzheimer′s Disease Diagnosis Using Multimodal Image Data[J]. Current Alzheimer Research, 2018, 15(1): 67-79. [36] Li Qing, Xia Wu, Xie Fufang, et al. Aberrant connectivity in mild cognitive impairment and Alzheimer disease revealed by multimodal neuroimaging data[J]. Neurodegenerative Diseases, 2018, 18(1): 5-18. [37] Youssofzadeh V, McGuinness B, Maguire LP, et al. Multi-kernel learning with dartel improves combined MRI-PET classification of Alzheimer′s disease in AIBL data: group and individual analyses[J]. Frontiers In Human Neuroscience, 2017, 11(1): 380-392. [38] 郝晓勇,王效春. 多模态MRI在阿尔茨海默病早期诊断中的研究进展[J]. 磁共振成像,2018,9(1):69-73. [39] Oh ES, Blennow K, Bigelow G, et al. Preoperative CSF biomarkers of Alzheimer′s disease in a hip fracture population: Age-dependent association with underlying cognitive function[J]. Alzheimer′s & Dementia, 2017, 13(7): P216-P216. [40] Vemuri P, Lesnick TG, Przybelski SA, et al. Age, vascular health, and Alzheimer disease biomarkers in an elderly sample[J]. Annals of Neurology, 2017, 82(5): 706-718. [41] Ramanan VK, Risacher SL, Nho K, et al. APOE and BCHE as modulators of cerebral amyloid deposition: A florbetapir PET genome-wide association study[J]. Molecular Psychiatry, 2014, 19(3):351-357. [42] Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer′s disease: a systematic review and meta-analysis[J]. Lancet Neurology, 2016, 15(7):673-684. [43] Sheikh-Bahaei N, Sajjadi SA, Pierce AL. Current role for biomarkers in clinical diagnosis of alzheimer disease and frontotemporal dementia[J]. Current Treatment Options in Neurology, 2017, 19(12):46-66. |
[1] |
Duan Mingjun, Li Ning, Chang Xin, Li Cheng, Zhang Nan, Ren Youwei, Yang Huanghao, He Hui, Luo Cheng, Yao Dezhong. Prediction and Evaluation of Schizophrenia Symptom by fMRI Brain Connectivity Centrality[J]. Chinese Journal of Biomedical Engineering, 2020, 39(1): 19-25. |
[2] |
Zhao Shilong, Li Xiaonan, Liu Guoqiang, Hu Lili, Chen Haiyan. Study on Magnetic Resonance Electrical Characteristic Imaging Method of Permanent Magnet[J]. Chinese Journal of Biomedical Engineering, 2019, 38(3): 375-379. |
|
|
|
|