|
|
Detection of Muscle Fatigue Based on sEMG Signal with AR Model |
Yang Zheng, Wang Liling*, Ma Dong |
Key Laboratory of Digital Medical Engineering of Hebei Province,College of Electronic and Information Engineering, Hebei University,Baoding 071002,Hebei,China |
|
|
Abstract According to the non-stationary characteristics of the surface electromyography signal, the autoregressive model was employed to analyze the surface electromyography signal. This method could rapidly estimate muscle fatigue by analyzing short surface electromyography signal. Surface electromyography signals from 10 subjects with pre-fatigue and post-fatigue were collected and analyzed using an autoregressive model. The autoregressive model parameters was identified by the Legendre?basis function expansion method, transforming the linear non-stationary problem into the linear time-invariant one. The autoregressive model parameters was solved in least square method. Changing rates (in percentage) of pre-fatigue and post-fatigue for the first parameter of the autoregressive model (ACR1), mean power frequency (MPF), median frequency (MF) were calculated and compared using two-tailedsamples t-test. The results showed that the changing rates of ACR1, MPF and MF were 34.33%±2.41%、25.68%±2.03% and 22.80%±2.19%, respectively. And the changing rate for ACR1 was significantly higher than that for both MPF and MF (P<0.05). ACR1 could not only realize the rapid assessment of muscle fatigue on short surface electromyography signal, but also has higher sensitivity than MPF and MF, providing a promising assessment method in the field of the upper muscular strain and the rehabilitation.
|
Received: 24 August 2017
|
|
|
|
|
[1] Boashash B, Azemi G, O'Toole JM. Time-frequency processing of nonstationary signals: Advanced TFD design to aid diagnosis with highlights from medical applications[J]. IEEE Signal Processing Magazine, 2013, 30(6):108-119. [2] 杨海燕, 蒋新华, 聂作先. 驾驶员疲劳检测技术研究综述[J]. 计算机应用研究, 2010, 27(5):1621-1624. [3] Kaiping YU, Pang SW A. Advances in method of time-varying linear/nonlinear structural system identification and parameter estimate[J]. Chinese Science Bulletin, 2009, 54(20):3147-3156. [4] 续秀忠, 张志谊, 华宏星,等. 应用时变参数建模方法辨识时变模态参数[J]. 航空学报, 2003, 24(3):230-233. [5] Chen Y. Identification of time-varying parameters base on time-varying AR model and wavelet transform[J]. Foreign Electronic Measurement Technology,2011,30(7):20-23. [6] Chon KH, Zhao H, Zou R, et al. Multiple time-varying dynamic analysis using multiple sets of basis functions[J]. IEEE Transactions on Biomedical Engineering, 2005, 52(5):956-960. [7] 刘洪涛.表面肌电信号的时变AR模型参数评估肌疲劳程度的研究[J].中国生物医学工程学报,2007,26(4):493-497. [8] 苗志敏. 非线性混合信号的盲源分离研究[D]. 哈尔滨: 哈尔滨工程大学, 2011. [9] 李涛.肌电功率谱中心频率与肌肉疲劳的相关分析[J].中国康复医学杂志,1995,10(4):153-155. [10] 王立玲, 李保宗, 刘晓光,等. 基于表面肌电信号的不同握姿下动态屈伸肘特性研究[J]. 中国康复医学杂志, 2017, 32(9):1043-1045. [11] Tesch PA, Dudley GA, Duvoisin MR, et al. Force and EMG signal patterns during repeated bouts of concentric or eccentric muscle actions.[J]. Acta Physiologica, 2010, 138(3):263-271. [12] Petrofsky JS, Lind AR. The influence of temperature on the amplitude and frequency components of the EMG during brief and sustained isometric contractions[J]. European Journal of Applied Physiology & Occupational Physiology, 1980, 44(2):189-200. [13] 刘建,邱任玲.表面肌电信号特征值提取方法研究发展趋势[J].生物医学工程学进展,2015,36(3):164-168. [14] 张莉.表面肌电信号模式识别及其运动分析[D].吉林:吉林大学,2013. [15] 杨海,程伟,楚丽妍. 基于过程神经网络算法的航天器非平稳机振动时频分析[J]. 振动与冲击,2008,27(1):12-15. [16] 孙世稳. 基于时变时间序列分析的凝析天然气计量算法研究[D]. 青岛:中国石油大学(华东),2009. [17] 张峰. 坐卧式下肢康复机器人主被动训练控制方法研究[D]. 北京:中国科学院大学, 2012. [18] 黄耐寒. 基于表面肌电的肌疲劳分析与肌力预测研究及实现[D]. 合肥:中国科学技术大学,2014. [19] 张希, 明东, 李林枫,等. 神经肌肉电刺激诱发的下肢运动疲劳信息检测与处理技术研究[J]. 中国生物医学工程学报, 2011,30(5):655-660. [20] Grenier Y. Time-dependent ARMA modeling of nonstationary signals[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 1983, 31(4):899-911. [21] 刘青,李阳.基于多尺度径向基函数时变系统辨识[J].北京航空航天大学学报,2015,41(9): 1722-1728. [22] 孙健,吴森堂. 基于改进粒子群优化算法的巡航导弹航路规划[J]. 北京航空航天大学学报,2011,37(10):1228-1232. [23] Boyas S, Guevel A. Neuromuscular fatigue in healthy muscle underlying factors and adaptation mechanisms. [J]. Annals of Physical & Rehabilitation Medicine, 2011, 54(2):88-108. [24] Tesch PA, Dudley GA, Duvoisin MR, et al. Force and EMG signal patterns during repeated bouts of concentric or eccentric muscle actions.[J]. Acta Physiologica, 1990, 138(3):263-271. [25] Petrofsky JS, Lind AR. Frequency analysis of the surface electromyogram during sustained isometric contractions[J]. European Journal of Applied Physiology & Occupational Physiology, 1980, 43(2):173-182. [26] 吴飞, 王健. 双关节运动的局部肌肉疲劳与肌电变化[J]. 中国康复医学杂志, 2006, 21(1):25-27. [27] 彭博. 基于Hilbert-Huang变换和支持向量机的生物电信号的分析研究[D]. 杭州:浙江大学, 2006. [28] 李颖. 随机信号的功率谱估计及其算法的改进[D]. 天津:天津大学, 2015. [29] Merletti R, Conte LRL. Advances in processing of surface myoelectric signals: Part 1[J]. Medical & Biological Engineering & Computing, 1995, 33(3):373-384. [30] Chang WH, Hwang CP. Autoregressivemodel to muscle force and fatigue analysis[C]//Proceedings of the International Conference of the IEEE EMBS.Orlando: IEEE, 1991, 13(1): 481-482. |
|
|
|