|
|
A Selection Method of Biomarkers for Schizophrenia Based on Sparse Representation |
Wu Jie*, Wei Fengxian, Fu Ling |
School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China |
|
|
Abstract Schizophrenia is a complex mental disease characterized by the division of thinking, emotion and behavior. A large number of studies have found out that genetic factors are the important causes of the disease all over the world. In order to identify the biomarkers of schizophrenia from a large number of imaging genetic data, we proposed an imaging genetic data integration analysis method based on sparse representation inspired by the sparse representation, and applied it for biomarkers selection for schizophrenia. From 208 samples, 41236 groups fMRI and 722177 groups SNP data were extracted. The generalized penalty restriction was applied to the traditional sparse representation model, and the weight factor α1,α2 were applied to fMRI and SNP data. With the primary aim to find out the pattern of significant association of two kinds of data under different conditions, various Lp(p=0, 0.5, 1)norm was used to solve our model. It turned out that gene DAOA and HTR2A were selected under different situations: 1. Weight factor of fMRI α1changed from 0.35 to 0.8, 2. SNP weight α2 was only 0.2, 3. All three norms of Lp(p=0, 0.5, 1). In addition, the results of imaging data suggested that Parietal_Inf_L and Parietal_Inf_R were associated with schizophrenia, which was same with previous studies of schizophrenia. The results show that the sparse representation of biomarkers selection method for schizophrenia is a feasible method; it may provide a new approach for the study of schizophrenia in the field of imaging genetics.
|
Received: 12 April 2017
|
|
|
|
|
[1] 郭建玉, 卜晓波, 韩彦龙. 精神分裂症相关基因遗传学研究进展[J]. 牡丹江医学院学报, 2016, 37(4):116-118. [2] 宗小芬, 胡茂林, 李宗昌,等. DNA甲基化在精神分裂症中的作用:研究进展及挑战[J].中国科学通报(英文版), 2015(2):149-155. [3] Chen Peilung, Avramopoulos D, Lasseter VK, et al. Fine mapping on chromosome 10q22-q23 implicates Neuregulin 3 in schizophrenia[J]. American Journal of Human Genetics, 2009, 84(1):21-34. [4] 李大伟, 顾鸣敏. 精神分裂症主要易感基因的研究进展[J]. 国际遗传学杂志, 2012, 35(5):283-289. [5] 邓红, 刘协和, 蔡贵庆,等. 6号染色体微卫星标记与精神分裂症的连锁不平衡研究[J]. 中华医学遗传学杂志, 2002, 19(1):6-9. [6] 李功迎, 宋思佳, 曹龙飞. 精神障碍诊断与统计手册第5版解读[J]. 中华诊断学电子杂志, 2014, 2(4):310-312. [7] 王燕霞, 张弓. 一种改进的用于稀疏表达的正交匹配追踪算法[J]. 太赫兹科学与电子信息学报, 2012, 10(5):579-583. [8] 芮国胜, 王林, 田文飚. 一种基于基追踪压缩感知信号重构的改进算法[J]. 电子测量技术, 2010, 33(4):38-41. [9] Baraniuk R, Davenport M, Duarte M, et al. An Introduction to Compressive Sensing[J]. IEEE Signal Processing Magazine, 2011, 28: 118\|127. [10] 孙晓燕, 常发亮. 梯度特征稀疏表示目标跟踪[J]. 光学精密工程, 2013, 21(12):3191-3197. [11] Zhang Minghuan,Chen Ying, Shen Ying, et al. Classification prediction of duchenne muscular dystrophy with a machine learning method[J]. Journal of University of Shanghai for Science and Technology, 2016(2): 154-159. [12] Donho DL, Tsaig Y. Fast Solution of, -Norm Minimization Problems When the Solution May Be Sparse[J]. IEEE Transactions on Information Theory, 2008, 54(11):4789-4812. [13] Hsu D, Kakade SM, Langford J, et al. Multi-Label Prediction via Compressed Sensing[J]. 2009:772-780. [14] Candes EJ, Tao T. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12):5406-5425. [15] 朱俊, 王常青, 薛潮彪,等. 精神分裂症易感基因PPP3CC的研究进展[J]. 汕头大学医学院学报, 2012, 25(4):236-238. [16] 胡国芹,杨程青, 吕钦谕,等. DAOA基因rs2391191位点多态性与中国汉族精神分裂症的相关性[J]. 上海交通大学学报(医学版), 2015, 35(10):1443-1447. [17] 阿周存, 李合, 马志敏,等. 5-HTR2A基因 102T/C多态性与精神分裂症的相关性研究[J]. 大理学院学报, 2004, 3(5):5-6. [18] 方纪成, 李德民, 陈旭东,等. 早发和晚发性精神分裂症灰质体积异常的研究[J]. 中国临床心理学杂志, 2015, 23(5):839-842. [19] 冯雅琴, 李巍. 精神分裂症易感基因[J]. 医学分子生物学杂志, 2009, 6(6):555-558. [20] Tan Jiaheng, Yi Lin, et al. Association between DAOA, gene polymorphisms and the risk of schizophrenia, bipolar disorder and depressive disorder[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 51(9):89-98. [21] Abdolmaleky HM, Yaqubi S, Papageorgis P, et al. Epigenetic dysregulation of HTR2A in the brain of patients with schizophrenia and bipolar disorder[J]. Schizophr Res. 2011, 129(2-3):183-190. [22] 刘虎, 范国光, 徐克,等. 低频振幅fMRI评价精神分裂症患者静息状态下脑功能活动[J]. 中国医学影像技术, 2010, 26(9):1659-1662. [23] Ji Bing, Zhang Renjie, Zhang Jiuquan,Gender Difference in Dynamic Thalamo-Cortical Functional Connections, Journal of University of Shanghai For Science and Technology,2016,(2):160-167. [24] Li Dawei, Collier DA, He Lin. Meta-analysis shows strong positive association of the neuregulin 1 (NRG1) gene with schizophrenia[J]. Human Molecular Genetics, 2006, 15(12):1995-2002. |
[1] |
Duan Mingjun, Li Ning, Chang Xin, Li Cheng, Zhang Nan, Ren Youwei, Yang Huanghao, He Hui, Luo Cheng, Yao Dezhong. Prediction and Evaluation of Schizophrenia Symptom by fMRI Brain Connectivity Centrality[J]. Chinese Journal of Biomedical Engineering, 2020, 39(1): 19-25. |
[2] |
Fu Yinghua, Li Jiang, Pan Dongyan, Wang Guozheng, Fu Dongxiang. Change Detection Based on Sparse Representation for Retina Fundus Image Pair[J]. Chinese Journal of Biomedical Engineering, 2019, 38(5): 540-548. |
|
|
|
|