|
|
Research and Novel Application on MR Diffusion Kurtosis Imaging |
Sha Miao1, Zhao Xin1#*, Chen Yuanyuan1, Wang Weiwei1, Zhou Peng1#, Ni Hongyan2, Ming Dong1# |
1(School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China) 2(Department of Radiology, Tianjin First Center Hospital, Tianjin 300192, China) |
|
|
Abstract As an emerging technology of diffusion MRI, diffusion kurtosis imaging (DKI) introduces forth-order tensor to quantify the degree to non-Gaussian water diffusion in biologic tissues. Additional kurtosis information on the water diffusion properties could be more sensitive to tissue microstructure in the brain. This paper introduced diffusion kurtosis model, data acquisition parameters, model fitting and microstructural model based on DKI to reveal research development and clinical application of DKI model. Meanwhile, limitations of DKI model and prospect of its profound influence on all aspects of neural radiology were discussed as well.
|
Received: 19 January 2016
|
|
|
|
|
[1] Hui ES, Cheung MM, Chan KC, et al. B-value dependence of DTI quantitation and sensitivity in detecting neural tissue changes[J]. Neuroimage, 2010, 49(3): 2366-2374. [2] Tuch DS, Reese TG, Wiegell MR, et al. Diffusion MRI of complex neural architecture[J]. Neuron, 2003, 40(5): 885-895. [3] Basser PJ, PierpaoliC.Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI[J]. Journal of Magnetic Resonance, 2011, 213(2): 560-570. [4] Jensen JH, Helpern JA, Ramani A, et al., Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging[J]. Magnetic Resonance in Medicine, 2005, 53(6): 1432-1440. [5] Gong NJ, Wong CS, Chan CC, et al. Aging in deep gray matter and white matter revealed by diffusional kurtosis imaging[J]. Neurobiology of Aging, 2014, 35(10): 2203-2216. [6] Veraart J, van Hecke W, Sijbers J, et al.Constrained maximum likelihood estimation of the diffusion kurtosis tensor using a rician noise model [J]. Magn Reson Med, 2011, 66(3): 678-686. [7] Basser PJ, Mattiello J, LeBihan D,et al. Estimation of the effective self-diffusion tensor from the NMR spin echo[J]. Journal of Magnetic Resonance, Series B, 1994. 103(3): 247-254. [8] Rudrapatna SU, Wieloch T, Beirup K, et al. Can diffusion kurtosis imaging improve the sensitivity and specificity of detecting microstructural alterations in brain tissue chronically after experimental stroke? Comparisons with diffusion tensor imaging and histology[J]. Neuroimage, 2014, 97: 363-373. [9] Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis[J]. NMR in Biomedicine, 2010, 23(7): 698-710. [10] Poot DH, Den Dekker AJ, Achten E, et al., Optimal experimental design for diffusion kurtosis imaging[J]. IEEE Trans Med Imaging, 2010, 29(3): 819-829. [11] Assemlal HE, Tschumperle D, Brun L, et al. Recent advances in diffusion MRI modeling: angular and radial reconstruction [J]. Med Image Anal, 2011, 15(4): 369-396. [12] Basser PJ, Mattiello J. MR diffusion tensor spec- troscopy and imaging[J].Biophysica,1994,66:259-267. [13] Steven AJ, Zhuo J, Melhem ER. Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain[J]. American Journal of Roentgenology, 2014. 202(1): 26-33. [14] Qi L, Wang Y,Wu E. D-eigenvalues of diffusion kurtosis tensors[J]. Journal of Computational and Applied Mathematics, 2008. 221(1): 150-157. [15] Fukunaga I, Hori M, Masutani Y, et al. Effects of diffusional kurtosis imaging parameters on diffusion quantification [J]. Radiol Phys Technol, 2013, 6(2): 343-348. [16] 俎栋林, 核磁共振成像学[M]. 北京: 高等教育出版社,2004. [17] Yan X, Zhou M, Ying L, et al., Evaluation of optimized b-value sampling schemas for diffusion kurtosis imaging with an application to stroke patient data[J]. Computerized Medical Imaging and Graphics, 2013, 37(4): 272-280. [18] Grebenkov DS. Exploring diffusion across permeable barriers at high gradients. II. Localization regime[J]. Journal of Magnetic Resonance, 2014, 248: 164-176. [19] Güllmar D, Haueisen J, Reichenbach JR. Analysis of b-value calculations in diffusion weighted and diffusion tensor imaging[J]. Concepts in Magnetic Resonance Part A, 2005. 25(1): 53-66. [20] Mulkern RV, Haker SJ, Maier SE. On high b diffusion imaging in the human brain: ruminations and experimental insights[J]. Magnetic Resonance Imaging, 2009, 27(8): 1151-1162. [21] Minati L, Aquino D, Rampoldi S, et al. Biexponential and diffusional kurtosis imaging, and generalised diffusion-tensor imaging (GDTI) with rank-4 tensors: A study in a group of healthy subjects[J]. Magnetic Resonance Materials in Physics, Biology and Medicine, 2007, 20(5-6): 241-253. [22] Cheung MM, Hui ES, Chan KC, et al. Does diffusion kurtosis imaging lead to better neural tissue characterization? A rodent brain maturation study[J]. Neuroimage, 2009, 45(2): 386-392. [23] Das SK, Wang JL, Bing L,et al. Regional values of diffusional kurtosis estimates in the healthy brain[J]. Journal of Magnetic Resonance Imaging, 2013, 37(3): 610-618. [24] Glenn GR, Helpern JA, Tabesh A, et al. Quantitative assessment of diffusional kurtosis anisotropy[J]. NMR in Biomedicine, 2015, 28(4): 448-459. [25] Fieremans E, Jensen JH, Helpern JA. White matter characterization with diffusional kurtosis imaging [J]. Neuroimage, 2011. 58(1):177-188. [26] Blockx I., De Groof G, Verhoye M, et al. Microstructural changes observed with DKI in a transgenic Huntington rat model: evidence for abnormal neurodevelopment [J]. Neuroimage, 2012. 59(2): 957-967. [27] Arcienega II., Brunet JF, Bloch J, et al. Cell locations for AQP1, AQP4 and 9 in the non-human primate brain[J]. Neuroscience, 2010. 167(4): 1103-1114. [28] Lazar M, Jensen JH, Xuan L, et al. Estimation of the orientation distribution function from diffusional kurtosis imaging[J]. Magnetic Resonance in Medicine, 2008, 60(4): 774-781. [29] Henriques RN, Correia MM, Nunes RG, et al.Exploring the 3D geometry of the diffusion kurtosis tensor: Impact on the development of robust tractography procedures and novel biomarkers[J]. NeuroImage, 2015, 111: 85-99. [30] Glenn GR, Helpern JA, Tabesh A, et al. Optimization of white matter fiber tractography with diffusional kurtosis imaging[J]. NMR in Biomedicine, 2015, 28(10): 1245-1256. [31] Jensen JH, Helpern JA. Resolving power for the diffusion orientation distribution function[J]. MagneticResonance in Medicine, 2015. [32] Jensen JH, Helpern JA, Tabesh A. Leading non-Gaussian corrections for diffusion orientation distribution function[J]. NMR in Biomedicine, 2014, 27(2): 202-211. [33] Hui ES, Russell Glenn G, Helpern JA, et al. Kurtosis analysis of neural diffusion organization[J]. Neuroimage, 2015. 106: 391-403. [34] Pierpaoli C,Basser PJ. Toward a quantitative assessment of diffusion anisotropy [J]. Magnetic Resonance in Medicine, 1996. 36(6): 893-906. [35] Kelm ND, West KL, Carson RP, et al. Evaluation of diffusion kurtosis imaging in ex vivo hypomyelinated mouse brains[J]. NeuroImage, 2016, 124: 612-626. [36] Raab P, Hattingen E, Franz K, et al.Cerebral gliomas: Diffusional kurtosis imaging analysis of microstructural differences[J]. Radiology, 2010, 254:876-881. [37] Wu EX, Cheung MM. MR diffusion kurtosis imaging for neural tissue characterization[J]. NMR Biomed, 2010, 23:836-848. [38] Sun P Z, Wang Y, Mandeville E, et al. Validation of fast diffusion kurtosis MRI for imaging acute ischemia in a rodent model of stroke[J]. NMR Biomed, 2014, 27(11): 1413-1418. [39] Wu Y, Kim J, Chan ST, et al. Comparison of image sensitivity between conventional tensor-based and fast diffusion kurtosis imaging protocols in a rodent model of acute ischemic stroke[J]. NMR Biomed, 2016,29(5): 625-630. [40] Grinberg F, Farrher E, Ciobanu L, et al. Non-Gaussian diffusion imaging for enhanced contrast of brain tissue affected by ischemic stroke[J]. PLoS ONE, 2014, 9(2): e89225. [41] Hui ES, Fieremans E, Jensen JH, et al. Stroke assessment with diffusional kurtosis imaging[J]. Stroke, 2012, 43(11): 2968-2973. [42] Weber RA, Hui ES, Jensen JH, et al. Diffusional kurtosis and diffusion tensor imaging reveal different time-sensitive stroke-induced microstructural changes[J]. Stroke, 2015, 46(2): 545-550. [43] van Cauter S, Veraart J, Sijbers J, et al.Gliomas: Diffusion kurtosis MR imaging in grading[J]. Radiology, 2012, 263(2): 492-501. [44] van Cauter S, De Keyzer F, Sima DM, et al. Integrating diffusion kurtosis imaging, dynamic susceptibility-weighted contrast-enhanced MRI, and short echo time chemical shift imaging for grading gliomas[J]. Neuro-Oncology, 2014, 16(7): 1010-1021. [45] Struyfs H, Van Hecke W, Veraart J, et al. Diffusion kurtosis imaging: A Possible MRI biomarker for AD diagnosis?[J]. Journal of Alzheimer's Disease, 2015, 48(4):937-948. [46] Lee SH, Coutu JP, Wilkens P, et al. Tract-based analysis of white matter degeneration in alzheimer's disease[J]. Neuroscience, 2015, 20(301):79-89. [47] Gong NJ, Wong CS, Chan CC,et al.Correlations between microstructural alterations and severity of cognitive deficiency in Alzheimer's disease and mild cognitive impairment: a diffusional kurtosis imaging study[J]. Magnetic Resonance Imaging, 2013. 31(5): 688-694. [48] Benitez A, Fieremans E, Jensen JH, et al. White matter tract integrity metrics reflect the vulnerability of late-myelinating tracts in alzheimer's disease [J]. Neuroimage: Clinical, 2014, 4:64-71. [49] Rosenkrantz AB, Sigmund EE, Johnson G, et al. Prostate cancer: Feasibility and preliminary experience of a diffusional kurtosis model for detection and assessment of aggressiveness of peripheral zone cancer[J]. Radiology, 2012(264):126-135. [50] Anderson SW, Barry B, Soto J,et al. Characterizingnon-Gaussian high b-value diffusion in liver fibrosis: stretched exponential and diffusional kurtosis modeling[J]. Journal of Magnetic Resonance Imaging, 2014(39):827-834. [51] Katahira K, Takahara T, Kwee TC, et al. Ultra-high-b-value diffusionweighted MR imaging for the detection of prostate cancer: Evaluation in 201 cases with histopathological correlation[J]. European Radiology, 2011,21:188-196. [52] Kitajima K, Kaji Y, Kuroda K,et al.High b-value diffusionweighted imaging in normal and malignant peripheral zone tissue of the prostate: effect of signal-to-noise ratio[J]. Magnetic Resonance Medicine,2008,7:93-99. [53] Kim CK, Park BK, Kim B. High-b-value diffusion-weighted imaging at 3T to detect prostate cancer: comparisons between b values of 1,000 and 2,000 s/mm2[J]. American Journal of Roentgenology, 2010,194:33-37. [54] Rosenkrantz AB, Kong X, Niver BE, et al. Prostate cancer: comparison of tumor visibility on trace diffusion-weighted images and the apparent diffusion coefficient map [J].American Journal of Roentgenology, 2011,196:123-129. [55] Tamura C, Shinmoto H, Soga S, et al. Diffusion kurtosis imaging study of prostate cancer: preliminary findings[J].Journal of Magnetic Resonance Imaging, 2014,40:723-729. [56] Suo S, Chen X, Wu L, et al. Non-Gaussian water diffusion kurtosis imaging of prostate cancer[J]. Magnetic Resonance Imaging, 2014, 32:421-427. [57] Nogueira L, Brandao S, Matos E, et al. Application of the diffusion kurtosis model for the study of breast lesions[J].European Radiology, 2014,24: 1197-1203. [58] Wu D, Li G, Zhang J,etal.Characterization of Breast Tumors Using Diffusion Kurtosis Imaging (DKI)[J]. PLoSONE, 2014(9):e113240. [59] Trampel R, Jensen JH, Lee RF, et al. Diffusional kurtosis imaging in the lung usinghyperpolarized 3He[J].Magnetic Resonance Medicine,2006,56:733-737. [60] Pentang G, Lanzman RS, Heusch P, et al. Diffusion kurtosis imaging of the human kidney: A feasibility study[J]. Magnetic Resonance Imaging, 2014,32:413-420. [61] Huang Y, Chen X, Zhang Z, et al. MRI quantification of non-Gaussian water diffusion in normal human kidney:A diffusional kurtosis imaging study[J]. NMR Biomed, 2015,28:154-161. |
|
|
|