|
Abstract To assess the biomechanics and clinical effects of facet joint plus interspinous process graft 3D fusion on preventing postoperative late correct loss in thoracolumbar fractures with disc damage treated with posterior approach. By simulating the internal fixation removal postoperatively, two surgical finite element models of the L1-L2 segments for facet joint plus interspinous process fusion (treatment group model) and single-level facet joint fusion (control group model) were established. The compression, flexion and extension were modeled on the basis of a three-column spine theory. The radiologic follow-up of a prospective clinical randomized controlled trial for the treatment group (11 cases) and control group (13 cases) were conducted to detect clinical effects of these two surgical models. The disc vertical compressive displacement and strain of the treatment group model were significantly reduced when compared to those of the control group model. The stress level on bilateral articular process bone graft was decreased. Furthermore, the posterior tension band of the treatment model was stronger and more stable than that of the control model. Accordingly, radiologic follow-up results of the trial at postoperative late stage of the treatment group were significantly better than those of the control group, which had statistically significant difference (P<0.05). Bilateral facet joints plus interspinous process 3D fusion is able to model the three-dimensional spinal stability more effectively than single-level facet joints fusion and was superior in bony fusion to prevent postoperative late correction loss in the patients treated with posterior approach alone. Finite element analysis associated with small randomized controlled trial is useful to design, evaluate and optimize surgical interventions.
|
|
|
|
|
[1]Vaccaro AR, Silber JS. Posttraumatic spinal deformity [J]. Spine, 2001, 26(24 Suppl): S111-S118.
[2]Knop C, Fabian HF, Bastian L, et al. Fate of the transpedicular intervertebral bone graft after posterior stabilisation of thoracolumbar fractures [J]. Eur Spine J, 2002,11(3): 251-257.
[3]Muller U, Berlemann U, Sledge J, et al. Treatment of thoracolumbar burst fractures without neurologic deficit by indirect reduction and posterior instrumentation: bisegmental stabilization with monosegmental fusion [J]. Eur Spine J, 1999, 8(4): 284-289.
[4]阮狄克, 袁文, 邱勇, 等. 脊柱内固定与融合[J]. 中国脊柱脊髓杂志, 2002, 12: 326-329.
[5]Ferguson RL, Allen BL Jr. A mechanistic classification of thoracolumbar spine fracture [J]. Clin Orthop Relat Res, 1984, 189: 77-88.
[6]Katscher S, Verheyden P, Gonschorek O, et al. Thoracolumbar spine fractures after conservative and surgical treatment. Dependence of correction loss on fracture level [J]. Unfallchirurg, 2003, 106(1): 20-27.
[7]Eysel P, Hopf C, Furderer S. Kyphotic deformation in fractures of the thoracic and lumbar spine [J]. Orthopade, 2001, 30(12): 955-964.
[8]钱邦平, 邱勇, 王斌, 等. 后外侧融合对胸腰椎爆裂型骨折疗效的影响[J]. 中华创伤杂志, 2006, 22: 121-125.
[9]Rommens PM, Weyns F, van Calenbergh F, et al. Mechanical performance of the Dick internal fixater: a clinical study of 75 patients [J]. Eur Spine J, 1995,4(2): 104-109.
[10]Knop C, Fabian H F, Bastian L, et al. Late results of thoracolumbar fractures after posterior instrumentation and transpedicular bone grafting[J]. Spine (Phila pa 1976), 2001, 26(1): 88-99.
[11]Alanay A, Acaroglu E, Yazici M, et al. Short segment pedicle instrumentation of thoracolumbar burst fractures: does transpedicular intracorporeal grafting prevent early failure? [J]. Spine (Phila pa 1976), 2001, 26(2): 213-217.
[12]Cho DY, Lee WY, Sheu PC. Treatment of thoracolumbar burst fractures with polymethyl methacrylate vertebroplasty and short segment pedicle screw fixation [J]. Neurosurgery, 2003, 53(6): 1354-1360,1360-1361.
[13]Korovessis P, Repantis T, Petsinis G, et al. Dircet reduction of thoracolumbar burst fractures by means of balloon kyphoplasty with calcium phosphate and stabilization with pediclescrew instrumentation and fusion [J]. Spine (Phila pa 1976), 2008, 33(4): E100-E108.
[14]Briem D, Rueger JM, Linhart W. Osseous integration of autogenous bone grafts following combined dorsoventral instrumentation of unstable thoracolumbar spine fractures [J]. Unfallchirurg, 2003, 106(3): 195-203.
[15]Bosworth DM, Fielding JW, Demarest L, et al. Spondylolisthesis: A critical review of a consecutive series of cases Treated by arthrodesis [J]. J Bone Joint Surg Am, 1955, 37-A(4): 767-797.
[16]McBride ED. A mortised transfacet bone block for lumbosacral fusion [J]. J Bone Joint Surg Am, 1949, 31-A(2): 385-399.
[17]Zdeblick TA. The treatment of degenerative lumbar disorders: A critical review of the literature [J]. Spine (Phila pa 1976), 1995, 20(24 Suppl): S126-S137.
[18]Christie SD, Song JK, Fessler RG. Dynamic interspinous process technology [J]. Spine (Phila pa 1976), 2005, 30(Suppl 16): S73-S78.
[19]Bono CM, Vaccaro AR. Interspinous process devices in the lumbar spine [J]. J Spinal Disord Tech, 2007, 20(3): 255-261.
[20]Zhang Licheng, Yang Guojing, Wu Lijun, et al. The biomechanical effects of osteoporosis vertebral augmentation with cancellous bone granules or bone cement on treated and adjacent nontreated vertebral bodies: a finite element evaluation [J]. Clin Biomech, 2010, 25(2): 166-172.
[21]Polikeit A, Nolte LP, Ferguson SJ. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finiteelement analysis [J]. Spine (hila pa 1976), 2003, 28(10): 991-996.
[22]Goel VK, Kong W, Han JS, et al. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles [J]. Spine (Phila pa 1976), 1993, 18(11): 1531-1541.
[23]Noailly J, Lacroix D, Planell JA. Finite element study of a novel intervertebral disc substitute [J]. Spine (Phila pa 1976), 2005, 30(20): 2257-2264.
[24]Adams MA, Bogduk N, Burton K, et al. The biomechanics of back pain [J].Journal of Biomechanics, 2003,36(1):148-149.
[25]Viceconti M, Olsen S, Nolte LP, et al. Extracting clinically relevant data from finite element simulation [J]. Clin Biomech, 2005, 20(5): 451-454.
[26]Gertzbein SD. Spine update. Classification of thoracic and lumbar fractures [J]. Spine (Phila pa 1976), 1994, 19(5): 626-628.
[27]Whitesides TE Jr. Traumatic kyphosis of the thoracolumbar spine [J]. Clin Orthop Relat Res, 1977, 128: 78-92.
[28]Magerl F, Aebi M, Gertzbein SD, et al. A comprehensive classification of thoracic and lumbar injuries [J]. Eur Spine J, 1994, 3(4):184-201.
[29]Kim Y. Finite element analysis of anterior lumbar interbody fusion [J]. Spine (Phila pa 1976), 2007, 32(23): 2558-2568.
[30]何登伟, 吴立军, 池永龙. 双侧关节突联合棘突间植骨融合预防胸腰椎骨折术后矫正丢失的生物力学三维有限元分析[J]. 医用生物力学, 2009, 24(3): 49-56.
[31]Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries [J]. Spine (Phila pa 1976), 1983, 8(8): 817-831.
[32]Bridwell KH. Load sharing principles: the role and use of anterior structural support in adult deformity [J]. Instr Course Lect, 1996, 45: 109-115.
[33]Kummer B. Biomechanische aspekte zur instabilitat der wirbelsaule[M]. //Fuchs GA,ed.
tuttgart: Thieme, 1991: 8-9.
[34]Farcy JP, Weidenbaum M, Glassman SD. Sagittal index in the management of the thoracolumbar burst fractures [J]. Spine (Phila pa 1976), 1990, 15(9): 958-965.
[35]Kuklo TR, Polly DW P, Owens BD, et al. Measurement of thoracic and lumbar fracture kyphosis: evaluation of intraobserver, interobserver, and technique variability [J]. Spine (Phia pa 1976), 2001, 26(1): 61-66.
[36]Rohlmann A, Riley LH 3rd, Bergmann G, et al. In vitro load measurement using an instrumented spinal fixation device [J]. Medical Engineering & Physics, 1996, 18(6): 85-488.[37]James KS,Wenger KH, Schlegal JD,et al. Biomechanical evaluation of the stability of thoracolumbar burst fractures [J]. Spine (Phila pa 1976),1994;19(15):1731-1740.
[38]Eno JJ, Chen JL, Mitsunaga MM. Short samesegment fixation of thoracolumbar burst fractures [J]. Hawaii J Med Public Health, 2012, 71(1): 19-22.
[39]Fang X,Fan S,Zhao X.Application of transforaminal lumbar interbody fusion in old thoracolumbar fracture and dislocation [J].J Spinal Cord Med, 2011, 34(6): 612-615.
[40]He Dengwei, Wu Lijun, Sheng Xiaoyong, et al. Internal fixation with percutaneous kyphoplasty compared with simple percutaneous kyphoplasty for thoracolumbar burst fractures in elderly patients: a prospective randomized controlled trial [J]. Eur Spine J, 2013, 22: 2256-2263.
[41]Dai L, Jiang LS, Jiang SD. Posterior shortsegment fixation with or without fusion for thoracolumbar burst fractures.a five to sevenyear prospective randomized study. [J]. J Bone Joint Surg Am, 2009: 91(5): 1033-1041.
|
|
|