Home    About Journal    Editorial Board    Instruction    Subscribe    Download    Messages Board    Contact Us    中文
  Apr. 30, 2025  
Quick Search
journal1
Current Issue | Archive | Adv Search |
Motor Imagery Signal Classification Based on HDP AR HMM
1 School of Automation Science and Engineering, South ChinaUniversity of Technology, Guangzhou 510640, China
2 Huangshi Electric Power Supply Company of State Grid Corporation of China, Huangshi 435000, China
Download: PDF (2214 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Hidden Markov model (HMM) is well applied in brain computer interface, especially in the classification of motor imagery(MI) electroencephalogram (EEG) signal. Conventional methods  use HMM to model EEG signal, then use the observed signal under controlled state to estimate the HMM parameters and finally classify the EEG signal through the trained HMMs. However, due to the characteristics of low signaltonoise ratio(SNR), high dimensionality and complexity of motor imagery EEG signal, HMM cannot fully describe the dynamic property of motor imagery EEG signal. In this paper, we use hierarchical Dirichlet process (HDP) with selfclustering ability to describe MI signals and then use AR/VAR model to highlight the time property of MI signal. Finally we combine them with Markov switching processing (MSP) so that we can get more information of MI signal. In order to verify this method, we tested the algorithm on our inhouse data and some of the 2003 BCI international competition data sets. High accuracy on classification of MI is obtained.
Key wordsmotor imagery      rain computer interface (BCI)      Markov switching processes      AR model      signal classification
     
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
WU Jun1 YANG Ya2 YU ZhuLiang1#* GU Zheng Hui1 LI YuanQing1#
Cite this article:   
WU Jun1 YANG Ya2 YU ZhuLiang1#* GU Zheng Hui1 LI YuanQing1#. Motor Imagery Signal Classification Based on HDP AR HMM[J]. journal1, 2014, 33(6): 666-672.
URL:  
http://cjbme.csbme.org/EN/ 10.3969/j.issn.0258-8021.2014. 06.05     OR     http://cjbme.csbme.org/EN/Y2014/V33/I6/666
Copyright © Editorial Board of Chinese Journal of Biomedical Engineering
Supported by:Beijing Magtech