|
|
A Review on Invasive Brain Machine Interface |
1 Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
2 College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
3 Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract The brain machine interface establishes a new communication and control pathway between the brain and external devices. It provides a new approach to understand more about the structure and function of brain. On the other hand, it is a possible treatment to restore the movement functions for patients. Invasive brain machine interface can realize elaborate motion control with the high spatial and temporal resolution of tremendous information embedded in the neural firings. Therefore it emerges as an interdisciplinary research area and attracts more attention. The paper reviews the development of invasive brain machine interface, especially on neural acquisition, movement decoding and artificial sensory feedback.
|
|
|
|
|
[1]Friehs GM, Zerris VA, Ojakangas CL, et al. Brainmachine and braincomputer interfaces [J]. Stroke, 2004,35: 2702.
[2]Schwartz AB, Cui XT, Weber DJ, et al. Braincontrolled interfaces: movement restoration with neural prosthetics [J]. Neuron, 2006, 52(1):205-220.
[3]Nicolelis MA, Lebedev MA. Principles of neural ensemble physiology underlying the operation of brainmachine interfaces [J]. Nat Rev Neurosci, 2009,10(7):530-540.
[4]Martin A, Sankar T, Lipsman N, et al. Brainmachine interfaces for motor control: a guide for neuroscience clinicians [J]. Can J Neurol Sci, 2012, 39(1):11-22.
[5]Konrad P, Shanks T. Implantable brain computer interface: Challenges to neurotechnology translation [J]. Neurobiology of Disease,2009,38(3):369-375.
[6]Scherberger H. Neural control of motor prostheses [J]. Current Opinion in Neurobiology, 2009,19(6):629-633.
[7]Linderman MD, Santhanam G, Kemere CT, et al. Signal processing challenges for neural prostheses [J]. IEEE Signal Processing Magazine, 2008, 25(1):18-28.
[8]Lebedev MA, Nicolelis MA. Brainmachine interfaces: past, present and future [J]. Trends Neurosci, 2006, 29(9):536-546.
[9]Gilja V, Chestek CA, Diester I, et al. Challenges and opportunities for nextgeneration intracortically based neural prostheses [J]. IEEE Transactions on Biomedical Engineering, 2011, 58(7):1891-1899.
[10]Lebedev MA, Tate AJ, Hanson TL, et al. Future developments in brainmachine interface research [J]. Clinics, 2011, 66 (Suppl 1):25-32.
[11]Nicolelis MA, Lebedev MA. Principles of neural ensemble physiology underlying the operation of brainmachine interfaces [J]. Nat Rev Neurosci, 2009, 10(7):530-540.
[12]Schwartz AB. Cortical neural prosthetics [J]. Annu Rev Neurosci, 2004, 27:487-507.
[13]Hochberg LR. Turning thought into action [J]. N Engl J Med, 2008, 359(11):1175-1177.
[14]Patil PG, Turner DA. The development of brainmachine interface neuroprosthetic devices [J]. Neurotherapeutics, 2008, 5(1):137-146.
[15]MussaIvaldi FA, Miller LE. Brainmachine interfaces: computational demands and clinical needs meet basic neuroscience [J]. Trends Neurosci, 2003,26(6):329-334.
[16]Millan JR, Carmena JM. Invasive or noninvasive: understanding brainmachine interface technology [J]. IEEE Eng Med Biol Mag, 2010, 29(1):16-22.
[17]Wolpaw JR, Birbaumer N, Heetderks WJ, et al. Braincomputer interface technology: a review of the first international meeting [J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2):164-173.
[18]Chapin JK, Moxon KA, Markowitz RS, et al. Realtime control of a robot arm using simultaneously recorded neurons in the motor cortex [J]. Nat Neurosci, 1999, 2(7):664-670.
[19]Wessberg J, Stambaugh CR, Kralik JD, et al. Realtime prediction of hand trajectory by ensembles of cortical neurons in primates[J]. Nature, 2000,408(6810):361-365.[20]Taylor DM, Tillery SI, Schwartz AB. Direct cortical control of 3D neuroprosthetic devices [J]. Science, 2002, 296(5574):1829-1832.
[21]Serruya MD, Hatsopoulos NG, Paninski L, et al. Instant neural control of a movement signal [J]. Nature, 2002, 416(6877):141-142.
[22]Talwar SK, Xu S, Hawley ES, et al. Rat navigation guided by remote control [J]. Nature, 2002, 417(6884):37-38.
[23]Carmena JM, Lebedev MA, Crist RE, et al. Learning to control a brainmachine interface for reaching and grasping by primates[J]. PLoS Biol, 2003, 1(2):E42.
[24]Musallam S, Corneil BD, Greger B, et al. Cognitive control signals for neural prosthetics [J]. Science, 2004,
305(5681):258-262.
[25]Hochberg LR, Serruya MD, Friehs GM, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia[J]. Nature, 2006, 4427099):164-171.
[26]Santhanam G, Ryu SI, Yu BM, et al. A highperformance braincomputer interface [J]. Nature, 2006, 442(7099):195-198.
[27]Velliste M, Perel S, Spalding MC, et al. Cortical control of a prosthetic arm for selffeeding [J]. Nature, 2008, 453(7198):1098-1101.
[28]Moritz CT, Perlmutter SI, Fetz EE. Direct control of paralysed muscles by cortical neurons [J]. Nature, 2008, 456(7222):639-642.
[29]Vargas-Irwin CE, Shakhnarovich G, Yadollahpour P, et al. Decoding complete reach and grasp actions from local primary motor cortex populations[J]. J Neurosci, 2010, 30(29):9659-9669.
[30]O’Doherty JE, Lebedev MA, Ifft PJ, et al. Active tactile exploration using a brainmachinebrain interface [J]. Nature, 2011, 479(7372):228-231.
[31]Hochberg LR, Bacher D, Jarosiewicz B, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm [J]. Nature, 2012,485(7398):372-375.
[32]Miller, Ethier. Restoration of grasp following paralysis through braincontrolled stimulation of muscles [J]. Nature, 2012, 485(7398):368-376.
[33]Bin G, Gao X, Wang Y, et al. A highspeed BCI based on code modulation VEP [J]. J Neural Eng, 2011, 8(2):25015.
[34]Yu Tianyou, Li Yuanqing, Long Jinyi, et al. Surfing the internet with a BCI mouse [J]. J Neural Eng, 2012, 9(3):36012.
[35]徐敏鹏,张力新,明东,等. 基于SSVEP阻断与P300特征的混合范式脑-机接口[J]. 电子学报,2013,41(11):2247-2251.
[36]Li J, Liang J, Zhao Q, et al. Design of assistive wheelchair system directly steered by human thoughts [J]. Int J Neural Syst, 2013, 23(3):1350013.
[37]Zhang Yangsong, Xu Pang, Guo Daqing, et al. Prediction of SSVEPbased BCI performance by the restingstate EEG network [J]. J Neural Eng, 2013, 10(6):66017.
[38]王海鹰. “机器人鸟”项目通过技术鉴定[EB/OL]. http://news.xinhuanet.com/tech/2007-03/23/content_5885056.htm, 2007-03-23/2014-07-17.
[39]李海鹏,戴振东,谭华,等. 壁虎动物机器人遥控系统[J]. 计算机技术与发展,2008,18(8):16-19.
[40]Zhang Dan, Song Huaying, Xu Rui, et al. Toward a minimally invasive braincomputer interface using a single subdural channel: a visual speller study [J]. Neuroimage, 2013, 71:30-41.
[41]Feng Zhouyan, Chen Weidong, Ye Xuesong, et al. A remote control training system for rat navigation in complicated environment [J]. Journal of Zhejiang UniversityScience A, 2007, 8(2):323-330.
[42]Hao Yaoyao, Zhang Qiaosheng, Zhang Shaomin, et al. Decoding Grasp Movement from Monkey Premotor Cortex for Realtime Prosthetic Hand Control [J]. Chinese Science Bulletin, 2013, 58(1):1-9.
[43]Nicolelis MA, Dimitrov D, Carmena JM, et al. Chronic, multisite, multielectrode recordings in macaque monkeys [J]. Proc Natl Acad Sci USA, 2003,100(19):11041-11046.[44]Maynard EM, Nordhausen CT, Normann RA. The Utah intracortical Electrode Array: a recording structure for potential braincomputer interfaces [J]. Electroencephalogr Clin Neurophysiol, 1997, 102(3):228-239.
[45]Branner A, Normann RA. A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats [J]. Brain Res Bull, 2000, 51(4):293-306.
[46]Suner S, Fellows MR, VargasIrwin C, et al. Reliability of signals from a chronically implanted, siliconbased electrode array in nonhuman primate primary motor cortex [J]. IEEE Trans Neural Syst Rehabil Eng, 2005, 13(4):524-541.
[47]Kipke DR, Vetter RJ, Williams JC, et al. Siliconsubstrate intracortical microelectrode arrays for longterm recording of neuronal spike activity in cerebral cortex [J]. IEEE Trans Neural Syst Rehabil Eng, 2003, 11(2):151-155.
[48]Acharya S, Tenore F, Aggarwal V, et al. Decoding individuated finger movements using volumeconstrained neuronal ensembles in the M1 hand area [J]. IEEE Trans Neural Syst Rehabil Eng, 2008, 16(1):15-23.
[49]Borton DA, YoonKyu S, Patterson WR, et al. Wireless, highbandwidth recordings from nonhuman primate motor cortex using a scalable 16-Ch implantable microsystem[C]// 2009 Annual International Conference of the IEEE EMBS. Minneapolis:IEEE, 2009:5531-5534.
[50]Song YK, Borton DA, Park S, et al. Active microelectronic neurosensor arrays for implantable brain communication interfaces [J]. IEEE Trans Neural Syst Rehabil Eng, 2009, 17(4):339-345.
[51]Olson BP, Si J, Hu J, et al. Closedloop cortical control of direction using support vector machines [J]. IEEE Trans Neural Syst Rehabil Eng, 2005,13(1):72-80.
[52]Carpaneto J, Raos V, Umilta MA, et al. Continuous decoding of grasping tasks for a prospective implantable cortical neuroprosthesis [J]. J Neuroeng Rehabil, 2012, 9(1):84.
[53]Xu Kai, Wang Yiwen, Wang Yueming, et al. Locallearningbased neuron selection for grasping gesture prediction in motor brain machine interfaces [J]. J Neural Eng, 2013, 10(2):26008.
[54]Li Yue, Hao Yaoyao, Wang Dong, et al. Decoding grasp types with high frequency of local field potentials from primate primary dorsal premotor cortex[C]// 2012 Annual International Conference of the IEEEEMBS. San Diego: IEEE, 2012:
1691-1694.
[55]Hatsopoulos N, Joshi J, O’Leary JG. Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles [J]. J Neurophysiol, 2004, 92(2):1165-1174.
[56]Dai Jianhua, Liu Xiaochun, Zhang Shaohua, et al. Continuous neural decoding method based on general regression neural network [J]. Int J Dig Cont Technol Appl, 2010,4:216-221.
[57]Georgopoulos AP, Kalaska JF, Caminiti R, et al. On the relations between the direction of twodimensional arm movements and cell discharge in primate motor cortex[J]. J Neurosci, 1982, 2(11):1527-1537.
[58]Wu Wei, Gao Yun, Bienenstock E, et al. Bayesian population decoding of motor cortical activity using a Kalman filter [J]. Neural Comput, 2006, 18(1):80-118.
[59]Wu W, Black MJ, Mumford D, et al. Modeling and decoding motor cortical activity using a switching Kalman filter [J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6):933-942.
[60]Wu W, Black MJ, Gao Y, et al. Neural decoding of cursor motion using a Kalman filter [J]. Advances in neural information processing systems, 2003:133-140.
[61]Li Zheng, O'Doherty JE, Hanson TL, et al. Unscented Kalman filter for brainmachine interfaces [J]. PLoS One, 2009,4(7):e6243.
[62]Gao Y, Black MJ, Bienenstock E, et al. Probabilistic inference of hand motion from neural activity in motor cortex [J]. Advances in Neural Information Processing Systems, 2002,1:213-220.
[63]Brockwell AE, Rojas AL, Kass RE. Recursive bayesian decoding of motor cortical signals by particle filtering[J]. J Neurophysiol, 2004,91(4):1899-1907.
[64]Eden U, Truccolo W, Fellows M, et al. Reconstruction of hand movement trajectories from a dynamic ensemble of spiking motor cortical neurons[C]// 2004 Annual International Conference of the IEEE EMBS. San Francisco: IEEE, 2004:
4017-4020.
[65]Wang Y, Paiva AR, Principe JC, et al. Sequential Monte Carlo pointprocess estimation of kinematics from neural spiking activity for brainmachine interfaces[J]. Neural Comput, 2009, 21(10):2894-2930.
[66]Fagg AH, Hatsopoulos NG, London BM, et al. Toward a biomimetic, bidirectional, brain machine interface [J]. Conf Proc IEEE Eng Med Biol Soc, 2009:3376-3380.
[67]Mussa-Ivaldi FA, Alford ST, Chiappalone M, et al. New perspectives on the dialogue between brains and machines [J]. Front Neurosci, 2010, 4:44.
[68]Szymanski FD, Semprini M, MussaIvaldi FA, et al. Dynamic BrainMachine Interface: a novel paradigm for bidirectional interaction between brains and dynamical systems [C]// 2011 Annual International Conference of the IEEEEMBS. Boston: IEEE, 2011:4592-4595.
[69]Marzullo TC, Lehmkuhle MJ, Gage GJ, et al. Development of closedloop neural interface technology in a rat model: combining motor cortex operant conditioning with visual cortex microstimulation [J]. IEEE Trans Neural Syst Rehabil Eng, 2010, 18(2):117-126.
[70]Brown TG, Sherrington CS. Observation on the localisation in the motor cortex of the baboom [J]. Journal of Physiology, 1911, 2(43):209-218.
[71]Doty RW. Conditioned reflexes elicited by electrical stimulation of the brain in Macaques [J]. Journal of Neurophysiology, 1965, 28:623-640.
[72]Doty RW. Electrical stimulation of the brain in behavioral context [J]. Annual Review of Psychology, 1969, 20(1):289-320.
[73]Romo R, Hernandez A, Zainos A, et al. Somatosensory discrimination based on cortical microstimulation [J]. Nature, 1998, 392(6674):387-390.
[74]Romo R, Hernandez A, Zainos A, et al. Sensing without touching: psychophysical performance based on cortical microstimulation [J]. Neuron, 2000, 26(1):273-278.
[75]Fitzsimmons NA, Drake W, Hanson TL, et al. Primate reaching cued by multichannel spatiotemporal cortical microstimulation [J]. J Neurosci, 2007, 27(21):5593-5602.[76]London BM, Jordan LR, Jackson CR, et al. Electrical stimulation of the proprioceptive cortex (area 3a) used to instruct a behaving monkey [J]. IEEE Trans Neural Syst Rehabil Eng, 2008, 16(1):32-36.
[77]O’Doherty JE, Lebedev MA, Hanson TL, et al. A brainmachine interface instructed by direct intracortical microstimulation [J]. Front Integr Neurosci, 2009, 3:20.
[78]O’Doherty JE, Lebedev MA, Li Z, et al. Virtual active touch using randomly patterned intracortical microstimulation [J]. IEEE Trans Neural Syst Rehabil Eng, 2012, 20(1):85-93.
[79]Medina LE, Lebedev MA, O'Doherty JE, et al. Stochastic facilitation of artificial tactile sensation in primates[J]. J Neurosci, 2012, 32(41):14271-14275.
[80]Venkatraman S, Carmena JM. Active sensing of target location encoded by cortical microstimulation [J]. IEEE Trans Neural Syst Rehabil Eng, 2011, 19(3):317-324.
[81]Yang Y, Deweese MR, Otazu GH, et al. Millisecondscale differences in neural activity in auditory cortex can drive decisions [J]. Nat Neurosci, 2008, 11(11):1262-1263[82]Miller LE, Weber DJ. Brain training: cortical plasticity and afferent feedback in brainmachine interface systems [J]. IEEE Trans Neural Syst Rehabil Eng, 2011, 19(5):465-467.
[83]Weber DJ, London BM, Hokanson JA, et al. Limbstate information encoded by peripheral and central somatosensory neurons: implications for an afferent interface [J]. IEEE Trans Neural Syst Rehabil Eng, 2011, 19(5):501-513.
[84]Brockmeier AJ, Choi JS, Emigh MS, et al. Subspace matching thalamic microstimulation to tactile evoked potentials in rat somatosensory cortex [C]. 2012 34th Annual International Conference of the IEEEEMBS. San Diego: IEEE, 2012, 2012:2957-2960.
[85]Zhang F, Aravanis AM, Adamantidis A, et al. Circuitbreakers: optical technologies for probing neural signals and systems [J]. Nat Rev Neurosci, 2007, 8(8):577-581.
[86]Cardin JA, Carlen M, Meletis K, et al. Targeted optogenetic stimulation and recording of neurons in vivo using celltypespecific expression of Channelrhodopsin-2[J]. Nat Protoc, 2010, 5(2):247-254.
[87]Guo S, Zhou H, Zhang J, et al. A multielectrode array coupled with fiberoptic for deepbrain optical neuromodulation and electrical recording [C]//2013 35th Annual International Conference of the IEEE EMBS. Osaka: IEEE, 2013:2752-2755.
[88]Chen S, Qu Y, Guo S, et al. Encode the “STOP” command by photostimulation for precise control of ratrobot [C] //2013 35th Annual International Conference of the IEEEEMBS. Osaka: IEEE, 2013:2172-2175.
[89]Guo S C, Zhou H, Wang Y M, et al. A ratrobot control system based on optogenetics [J]. Applied Mechanics and Materials, 2014, 461:848-852.
[90]Guo S, Chen S, Zhang Q, et al. Optogenetic activation of the excitatory neurons expressing CaMKII alpha in the ventral tegmental area upregulates the locomotor activity of free behaving rats[J]. Biomed Res Int, 2014, 2014:687469.
|
|
|
|