|
|
Research Progress and Application of the Third Generation of Artificial Heart Pump |
Liu Xin1,2, Qu Hongyi1,3*, Wang Cong 1,3, Liu Jianhua1,2,3, Wang Qiuliang1,2,3* |
1(Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, Jiangxi, China) 2(School of Rare Earths, University of Science and Technology of China, Hefei 230026, China) 3(Institute of Electrical Engineering, Chinese Academy of Science, Beijing 100190, China) |
|
|
Abstract The death rate of heart failure is extremely high and the number ofpatients continues to rise. Artificial heart pump is the last hope and the most effective way to prolong the survival time of many patients with heart failure. The development and application of the third generation of artificial heart pump can push the treatment of heart failure to a new level. First of all, this paper summarized the research status and application of the third generation of artificial heart pump, and the development of the third generation of artificial heart pump in China was introduced as well. Secondly, the third generation of artificial heart pump related suspension technology, bearingless motor, pump control algorithm, impeller optimization design, blood compatibility and other key technologies were described and summarized in detail. Finally, the research trends of miniaturization lightweight, bionic stroke, intelligent control technology, blood compatibility, reliability and fault tolerance technology are proposed and discussed.
|
Received: 29 March 2021
|
|
Corresponding Authors:
*E-mail:quhongyi@gia.cas.cn;qiuliang@gia.cas.cn
|
|
|
|
[1] Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow left ventricular assist device [J]. N Engl J Med, 2009, 361(23):2241-2251. [2] Drazner MH. A new left ventricular assist device-better, but still not ideal [J]. N Engl J Med. 2018, 378(15): 1442-1443. [3] Whitbread J, Etchill EW, Giuliano KA, et al. Analysis of waitlist inactivity among patients with ventricular assist devices (VAD) [J]. 2020, 231(4S1):S46. [4] Luengas VR, Raju S. The importance of longitudinal neurocognitive assessments in heart failure patients receiving a left ventricular assist device [J]. Annales De Dermatologie Et De Vénéréologie, 2015, 5(2):29-34. [5] Payne CJ, Wamala I, Bautista SD, et al. Soft robotic ventricular assist device with septal bracing for therapy of heart failure [J]. Science Robotics, 2017, 2(12):6736. [6] Cohn WE, Timms DL, Frazier OH. Total artificial hearts: past, present, and future [J]. Nat Rev Cardiol. 2015, 12(10): 609-617. [7] Arabía FA. SynCardia total artificial heart opportunities and challenges moving forward [J]. Artificial Organs, 2019, 00: 1-2. [8] Kumar A, Khanwilkar PS. Long-term implantable ventricular assist devices (VADs) and total artificial hearts (TAHs) [J]. Comprehensive Biomaterials II, 2017, 7: 506-524. [9] Liotta D, Hall CW, Akers WW, et al. A pseudoendocardium for implantable blood pumps [J]. Transactions-American Society for Artificial Internal Organs, 1966, 12(1): 129-138. [10] Hall CW, Liotta D, Henly WS, et al. Development of artificial intrathoracic circulatory pumps [J]. American Journal of Surgery, 1964, 108(5): 685-692. [11] Starnes VA, Oyer PE, Portner P M, et al. Isolated left ventricular assist as bridge to cardiac transplantation [J]. Journal of Thoracic & Cardiovascular Surgery, 1988, 96(1): 62-71. [12] Lietz K, Long JW, Kfoury AG, et al. Impact of center volume on outcomes of left ventricular assist device implantation as destination therapy: analysis of the Thoratec HeartMate registry, 1998 to 2005 [J]. Circulation Heart Failure, 2009, 2(1): 3-10. [13] Kormos RL, Teuteberg JJ, Pagani FD, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: Incidence, risk factors, and effect on outcomes [J]. J Thorac Cardiovasc Surg, 2010, 139(5): 1316-1324. [14] Pagani FD, Miller LW, Russell SD, et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device [J]. Journal of the American College of Cardiology, 2009, 54(4): 312-321. [15] John R, Kamdar F, Liao K, et al. Improved survival and decreasing incidence of adverse events with the HeartMate II left ventricular assist device as bridge-to-transplant therapy [J]. Annals of Thoracic Surgery, 2008, 86(4): 1227-1235. [16] Schmid C, Tjan TDT, Etz C, et al. First clinical experience with the incor left ventricular assist device [J]. Journal of Heart & Lung Transplantation, 2005, 24(9): 1188-1194. [17] Frazier OH, Myers TJ, Gregoric ID, et al. Initial clinical experience with the Jarvik 2000 implantable axial-flow left ventricular assist system [J]. Circulation, 2002, 105(24): 2855-2860. [18] Sajgalik P, Grupper A, Edwards BS, et al. Current status of left ventricular assist device therapy [J]. Mayo Clinic Proceedings, 2016, 91(7): 927-940. [19] Yoshiki S. Current status of third-generation implantable left ventricular assist devices in Japan, Duraheart and HeartWare [J]. Surgery Today, 2015, 45(6): 672-681. [20] Wood C, Maiorana A, Larbalestier R, et al. First successful bridge to myocardial recovery with a HeartWare HVAD [J]. J Heart Lung Transplant, 2008, 27(6): 695-697. [21] Larose JA, Shambaugh CL. Stabilizing drive for contactless rotary blood pump impeller [J]. 2014, 0179983 A1: 1-11. [22] Timms D. A review of clinical ventricular assist devices [J]. Medical Engineering & Physics, 2011, 33(9): 1041-1047. [23] Vasanthan V, Holloway D, Clarke B, et al. Initial canadian experience with bilateral minithoracotomy approach for HeartMate III left ventricular assist device implantation [J]. CJC Open, 2019, 1(5): 261-263. [24] Slaughter MS, Giridharan GA, Aggarwal S, et al. 294: Design and feasibility testing of a miniaturized transapical mechanical circulatory support device: MVAD [J]. Journal of Heart & Lung Transplantation, 2010, 29(2-supp-S): S99-S100. [25] Tamez D, Larose JA, Shambaugh C, et al. Early feasibility testing and engineering development of the transapical approach for the HeartWare MVAD ventricular assist system [J]. Asaio Journal, 2014, 60(2): 170-177. [26] Bourque K, Gernes DB, Loree HM, et al. HeartMate III: pump design for a centrifugal LVAD with a magnetically levitated rotor [J]. American Society for Artificial Internal Organs Journal, 2001, 47(4): 401-405. [27] Mehra MR, Uriel N, Naka Y. A fully magnetically levitated left ventricular assist device - final report [J]. N Engl J Med. 2019, 380(17): 1618-1627. [28] Miyamoto T, Kado Y, Polakowski AR, et al. Effects of blood pump orientation on performance: in vitro assessment of universal advanced ventricular assist device [J]. Artif Organs. 2020, 44(10): 1055-1060. [29] 曾侃,罗征祥,叶椿秀. 自制气动式左心辅助循环的山羊活体实验[J]. 中华胸心血管外科杂志, 1996, 12(2): 117-118. [30] 张岩,孙寒松,周建业,等. 1种新型轴流式心脏辅助血泵的研制和初步的动物实验 [J]. 中国生物医学工程学报, 2008, 27(1): 97-101,107. [31] 张岩,胡盛寿,周建业,等. FW型轴流泵的体外溶血与动物实验研究 [J]. 中国胸心血管外科临床杂志, 2009(2): 114-117. [32] Wu Tingting, Lin Hao, Zhu Yuxin, et al. Hematological, biochemical, and end-organ effects of the CH-VAD in ovine model [M]. Berlin: Springer International Publishing, 2015:56-59. [33] Zhang Jiafeng, Chen Zengsheng, Griffith BP, et al. Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps [J]. The International Journal of Artificial Organs, 2020(4): 039139882090373. [34] 徐创业,刘修健,吴广辉,等. CH-VAD动物实验抗凝管理研究 [J].中国生物医学工程学报, 2014, 33(5): 585-592. [35] 航天泰心科技有限公司. 血泵装置 [P]. 中国专利: 201721094232.3, 2019-06-25. [36] 顾易之. "中国智造"人工心脏 [J]. 人人健康, 2018(7): 26-27. [37] 许剑,周娜,范庆麟等. 血泵装置 [P]. 中国专利: 209019545U, 2017-08-29. [41] 严小鹏,商澎,史爱华,等. 磁外科学体系的探索与建立 [J]. 科学通报, 2019, 64(8): 815-826. [42] Akamatsu T, Nakazeki T, Itoh H. Centrifugal blood pump with a magnetically suspended impeller [J]. Artificial Organs, 1992, 16(3): 305-308. [43] Michiel M, Aly EB, Latif A, et al. European experience of DuraHeart magnetically levitated centrifugal left ventricular assist system [J]. European Journal of Cardio-Thoracic Surgery, 2009, 35(6):1020-1028. [44] Pedersen A. World heart ceases efforts to sell levacor, focus on MiFlow [J]. Medical Device Daily, 2011, 9(7): 271-280. [45] Bourque K, Cotter C, Dague C, et al. Design rationale and preclinical evaluation of the HeartMate III left ventricular assist system for hemocompatibility [J]. ASAIO J. 2016, 62(4): 375-383. [46] Morshuis M, Schoenbrodt M, Nojiri C, et al. DuraHeart magnetically levitated centrifugal left ventricular assist system for advanced heart failure patients [J]. Expert Review of Medical Devices, 2010, 7(2): 173-183. [47] Kurita N, Ishikawa T, Saito N, et al. A double-sided stator type axial self-bearing motor development for total artificial heart [C]// IEEE International Electric Machines & Drives Conference. Miami: IEEE, 2017:327-336. [48] 杨石平,任永武,余海涛,等. 可植入血泵磁悬浮支承结构设计与研究 [J]. 机床与液压, 2018, 46(1):87-90. [49] Takashi Y, Osamu M, Masahiro N, et al. Hemocompatibility of a hydrodynamic levitation centrifugal blood pump [J]. Journal of Artificial Organs, 2007, 10(2): 71-76. [50] Kosaka R, Yada T, Nishida M, et al. Geometric optimization of a step bearing for a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis [J]. Artificial Organs, 2013, 37(9): 778-785. [51] Esmore DS, Kaye D, Salamonsen R, et al. First clinical implant of the VentrAssist left ventricular assist system as destination therapy for end-stage heart failure [J]. Journal of Heart & Lung Transplantation, 2005, 24(8): 1150-1154. [52] Esmore D, Kaye D, Spratt P, et al. A Prospective, Multicenter trial of the VentrAssist left ventricular assist device for bridge to transplant: safety and efficacy [J]. Journal of Heart & Lung Transplantation, 2008, 27(6): 579-588. [53] Okamoto E, Ishida Y, Yano T, et al. Passive magnetic bearing in the 3rd generation miniature axial flow pump-the valve pump 2 [J]. Journal of Artificial Organs, 2015, 18(2): 181-184. [54] 王伟,姜洋,孙昊成,等. 磁液悬浮式离心血泵的性能仿真分析与实验研究 [J]. 北华航天工业学院学报, 2013, 23(4): 4-6,10. [55] 王凤翔,徐隆亚. 一种用于人工心脏的无轴承无刷永磁直流电动机的设计与特性 [J]. 电机与控制学报, 1997(4): 1-5. [56] Wan S, Tseng KJ, Chan WK. Novel bearingless centrifugal blood pump [C]// Proceedings of 2001 4th IEEE International Conference on Power Electronics and Drive Systems. Denpasar :IEEE, 2001: 489-492. [57] Horz, Herzog, Medler. System design and comparison of calculated and measured performance of a bearing less BLDC-drive with axial flux path for an implantable blood pump [C]// International Symposium on Power Electronics. Taormina:IEEE, 2006: 358-361. [58] 朱熀秋,成秋良. 基于磁链等效虚拟绕组电流分析方法的无轴承电机径向悬浮力控制 [J]. 科学通报, 2009(2): 262-268. [59] 苏晓莲,蒋山. 永磁电机及其控制在人工血泵领域中的发展与应 [J]. 中国医疗器械杂志, 2019, 43(5): 355-358. [60] Schoeb R, Barletta N. Magnetic bearing. Principle and application of a bearingless slice motor.[J]. Jsme International Journal, 1997, 40(4):593 -598. [61] Schmitto JD, Hanke JS, Rojas SV, et al. First implantation in man of a new magnetically levitated left ventricular assist device (HeartMate III) [J]. Journal of Heart & Lung Transplantation, 2015, 34(6): 858-860. [62] Gruber W, Nussbaumer T, Grabner H, et al. Wide air gap and large-scale bearingless segment motor with six stator elements [J]. IEEE Transactions on Magnetics, 2010, 46(6):2438-2441. [63] 金超武,熊峰,周瑾,等. 定子永磁型无轴承薄片电机的机理研究 [J]. 电机与控制学报, 2020, 24(12): 17-26. [64] 杨丁丁. 左心室辅助装置磁悬浮技术研究 [D]. 武汉:中南民族大学, 2013. [65] 孙传余,肖楠,曹茂永,等. 人工心脏单自由度悬浮控制仿真研究 [J]. 微特电机, 2018, 46(5): 76-78. [66] 朱卓玲,赵伟国,黄峰. 基于BP神经网络的旋转血泵生理控制 [J].中国生物医学工程学报, 2019, 38(5): 581-589. [67] 刘佩璋. 基于模糊PID控制策略的人工心脏轴流泵控制方法研 [D].太原:中北大学, 2014. [68] Wu Tingting, Lin Hao, Zhu Yuxin, et al. Hemodynamic performance of a compact centrifugal left ventricular assist device with fully magnetic levitation under pulsatile operation: an in vitro study [J]. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 2020, 234(11): 1-8. [69] Ravanshadi S, Jahed M. Introducing an adaptive robust controller for artificial heart [C]//The Fourth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. Roma: IEEE, 2012: 1008-1013. [70] Kim T. Sensorless control of the BLDC motors from near-zero to full speed [D]. State of Texas:Texas A&M University, 2003. [71] 谭亚. 人工心脏血泵电机无位置传感器控制 [D]. 苏州:苏州大学, 2015. [72] Chua LP, Yu SCM, Leo HL, et al. Comparison of flow characteristics of enlarged blood pump models with different impeller design [J]. International Communications in Heat and Mass Transfer, 1999, 26(3): 369-378. [73] Tamaki T, Sebastian S, Masaharu Y, et al. Impeller design for a miniaturized centrifugal blood pump [J]. Artificial Organs, 2015, 24(10): 821-825. [74] Curtas AR, Wood HG, Allaire PE, et al. Computational fluid dynamics modeling of impeller designs for the HeartQuest left ventricular assist device [J]. Asaio Journal, 2002, 48(5): 552-561. [75] 胡婉倩. 离心式人工心脏泵叶轮的水力设计及溶血性能优化 [D]. 武汉:华中科技大学, 2018. [76] Yoshiyuki, Takami, Tadashi, et al. Hemolytic effect of surface roughness of an impeller in a centrifugal blood pump [J]. Artificial Organs, 1997, 21(7): 686-690. [77] Yasuharu, Ohgoe, Masanori, et al. Improved hemolytic performance of blood pump with fluorine-doped hydrogenated amorphous carbon coating [J]. Advances in Chemical Engineering and Science, 2013, 3(3C): 10-16. [78] Mehra MR, Uriel N, Naka Y, et al. A fully magnetically levitated left ventricular assist device-final report [J]. N Engl J Med, 2019, 380(17): 1618-1627. [79] Sidhu K, Lam PH, Mehra MR. Evolving trends in mechanical circulatory support: Clinical development of a fully magnetically levitated durable ventricular assist device [J]. Trends Cardiovasc Med, 2020, 30(4): 223-229. [80] 王义文,张帆,方媛,等. 离心式磁悬浮血泵溶血性能分析 [J].中国医疗器械杂志, 2016, 40(3): 169-172. [81] 李寰. 心室辅助装置溶血性能评价方法及叶轮优化设计研究 [D]. 杭州:浙江大学, 2018. [82] Ozturk C, Aka IB, Lazoglu I. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump [J]. Int J Artif Organs, 2018, 41(11): 730-737. [83] Fraser KH, Taskin ME, Griffith BP, et al. The use of computational fluid dynamics in the development of ventricular assist devices [J]. Medical Engineering & Physics, 2010, 33(3): 263-280. [84] Taskin ME, Fraser KH, Zhang Tao, et al. Evaluation of eulerian and lagrangian models for hemolysis estimation [J]. Asaio Journal, 2012, 58(4): 363-372. [85] Arora D, Behr M, Pasquali M. Hemolysis estimation in a centrifugal blood pump using a tensor-based measure [J]. Artificial Organs, 2010, 30(7): 539-547. [86] Morshed KN, Bark D, Forleo M, et al. Theory to predict shear stress on cells in turbulent blood flow [J]. PLoS ONE, 2015, 9: e105357. [87] Giersiepen M, Wurzinger LJ, Opitz R, et al. Estimation of shear stress-related blood damage in heart valve prostheses in vitro comparison of 25 aortic valves [J]. The International Journal of Artificial Organs, 1990, 13(5): 300-306. [88] Boreda R, Fatemi RS, Rittgers SE. Potential for platelet stimulationin critically stenosed carotid and coronary arteries [J]. J Vasc Invest, 1995, 1: 26-37. [89] Mehrabadi M, Ku DN, Champion JA, et al. Effects of red blood cells and shear rate on thrombus growth [J]. Georgia Institute of Technology, 2014, 9(2): 36-45. [90] Wu Tingting, Lin Hao, Zhu Yuxin, et al. Hemodynamic performance of a compact centrifugal left ventricular assist device with fully magnetic levitation under pulsatile operation: an in vitro study [J]. Proc Inst Mech Eng H, 2020, 234(11): 1235-1242. [91] Zulkifli SA, Ahmad MZ. H∞ speed control for permanent magnet synchronous motor [C]// 2011 International Conference on Electronic Devices, Systems & Applications. Chengdu: IEEE, 2011:190-196. [92] 赵君,刘卫国,张文婧. 永磁同步交流牵引系统LQG/LTR控制研 [J]. 电力自动化设备, 2012,32(7): 56-61. |
|
|
|