|
|
Measurements of Wall Shear Stress for Blood Vessel and its Progress in Clinical Research |
Du Yigang1,Liu Dejie1,Shen Yingying1,Zhu Lei1,He Xujin1,Chen Siping2#* |
1(Shenzhen Mindray Bio-Medical Electronics Co.Ltd., Shenzhen 518057, Guangdong, China)
2(National\|Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory forBiomedical Measurements and Ultrasound Imaging,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China) |
|
|
Abstract This paper summarized different methods for measuring wall shear stress (WSS) of the blood vessel. The methods include using PC-MRI (phase contrast magnetic resonance imaging), PC-MRI with CFD (computational fluid dynamics), CT (computed tomography), IVUS (intravascular ultrasound), conventional ultrasound, ultrasound vector flow imaging and UIV/PIV (ultrasound/particle image velocimetry) for measuring blood flow velocities and then calculate the WSS based on the measured velocities. An important parameter, blood viscosity,was presented in the paper for calculating WSS.The calculation of 3D vector WSS and WSS related clinical parameters were summarized and discussed. Clinical studies of WSS for carotid artery, aorta, coronary artery, brachial artery and femoral artery have been presented in the paper and 3 major concepts for WSS were summarized from references.
|
Received: 06 March 2018
|
|
|
|
|
[1] 陈伟伟,高润霖,刘力生,等. 《中国心血管病报告2016》摘要[J]. 中国循环杂志,2017, 32(6):521-530.
[2] 国家心血管病中心. 中国心血管病报告2016[M]. 北京:中国大百科全书出版社,2017:14-16.
[3] Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics—2017 update: A report from the American Heart Association [J].Circulation,2017, 135:e146-e603.
[4] Engelter ST, Fluri F, Buitrago TC, et al. Life-threatening orolingual angioedema during thrombolysis in acute ischemic stroke [J]. J Neurol, 2005, 252(10):1167-1170.
[5] Wentzel JJ, Janssen E, Vos J, et al. Extension of increased atherosclerotic wall thickness into high shear stress regions is associated with loss ofcompensatory remodeling [J].Circulation,2003,108:17-23.
[6] Han D, Starikov A, Hartaigh B, et al. Relationship between endothelial wall shear stress and high-risk atherosclerotic plaque characteristics for identification of coronary lesions that cause ischemia: a direct comparison with fractional flow reserve [J]. J Am Heart Assoc. 2016, 5:e004186.
[7] Miura Y, Ishida F, Umeda Y, et al. Low wall shear stress is independently associated with the rupture status of middle cerebral artery aneurysms [J]. Stroke, 2013, 44:519-521.
[8] Carallo C, Lucca LF, Ciamei M, et al. Wall shear stress is lower in the carotid artery responsible for a unilateral ischemic stroke [J]. Atherosclerosis, 2006, 185:108-113.
[9] Irace C, Cortese C, Fiaschi E, et al. wall shear stress is associated with intima-media thickness and carotid atherosclerosis in subjects at low coronary heart disease risk [J]. Stroke,2004, 35:464-468.
[10] 王中群,杨永宗,严金川. 免疫应答与动脉粥样硬化[J]. 中华老年心脑血管病杂志,2013, 15(11):1216-1217.
[11] Wentzel JJ, Chatzizisis YS, Gijsen FJH, et al. Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions [J]. Cardiovascular Research, 2012, 96: 234-243.
[12] Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis [J]. JAMA, 1999, 282:2035-2042.
[13] Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology [J]. Nat Clin Pract Cardiovasc Med, 2009, 6(1):16-26.
[14] Wentzel JJ, Gijsen FJH, Schuurbiers JCH, et al. Geometry guided data averaging enables the interpretation of shear stress related plaque development in human coronary arteries [J]. J Biomech, 2005, 38: 1551-1555.
[15] 张友明,杨笛,吴恒芳,等. 低剪切力下调PPAR信号通路参与BALB/c 小鼠局部血管早期病变的实验研究[J]. 南京医科大学学报(自然科学版),2015, 35(5):607-614.
[16] 曹雪飞,董国,杨树森. 剪切力对血管内皮功能影响及机制研究进展[J]. 中华实用诊断与治疗杂志, 2016, 30(10):956-958.
[17] Feldman CL, Ilegbusi OJ, Hu Z, et al. Determination of in vivo velocity and endothelial shear stress patterns with phasic flow in human coronary arteries: A methodology to predict progression of coronary atherosclerosis [J].Am Heart J, 2002, 143:931-939.
[18] Stone PH, Coskun AU, Kinlay S, et al. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humansin vivo 6-month follow-up study [J].Circulation,2003, 108:438-444.
[19] Mutsaerts HJMM, Palm-Meinders IH, de Craen AJM, et al. Diastolic carotid artery wall shear stress is associated with cerebral infarcts and periventricular white matter lesions [J]. Stroke, 2011, 42:3497-3501.
[20] Shaaban AM, Duerinckx AJ. Wall shear stress and early atherosclerosis: a review [J]. Am J Roentgenol, 2000, 174(6): 1657-1665.
[21] 乔爱科,刘有军,伍时桂. 弯曲动脉的血流动力学数值分析[J]. 计算力学学报,2003, 20(2):155-163.
[22] 黄金梅,曾高峰,正常高值血压患者血流剪切力对内皮细胞功能的影响[J]. 医学信息,2011, 24(1): 245-247.
[23] Vergallo R, Papafaklis MI, Yonetsu T, et al. Endothelial shear stress and coronary plaque characteristics in humans combined frequency-domain optical coherence tomography and computational fluid dynamics study [J].Circ Cardiovasc Imaging,2014, 7:905-911.
[24] Milnor W. Hemodynamics [M]. Baltimore: Williams & Wilkins, 1982.
[25] Rowan JO. Physics and the Circulation[M].Bristol:Adam Hilger Ltd, 1981.
[26] Efstathopoulos EP, Patatoukas G, Pantos I, et al. Wall shear stress calculation in ascending aorta using phase contrast magnetic resonance imaging. Investigating effective ways to calculate it in clinical practice [J]. Physica Medica, 2008, 24:175-181.
[27] Oyre S, Ringgaard SS, Kozerke SS, et al. Quantitation of circumferential subpixel vessel wall position and wall shear stress by multiple sectored threedimensional paraboloid modeling of velocity encoded cine MR [J]. Magn Reson Med, 1998, 40:645-655.
[28] 杜宜纲,刘德杰,樊睿,等. 血流向量超声成像技术在评价颈动脉硬化中的应用进展[J]. 中华医学超声杂志(电子版),2015, 12(9):681-684.
[29] Oyre S, Ringgaard S, Kozerke S, et al. Accurate noninvasive quantitation of blood flow, cross-sectional lumen vessel area and wall shear stress by three-dimensionalparaboloid modeling of magnetic resonance imaging velocity data [J]. J Am Coll Cardiol,1998, 32(1): 128-134.
[30] Potters WV, Marquering HA, VanBavel E, et al. Measuring wall shear stress using velocity-encoded MRI [J]. Curr Cardiovasc Imaging Rep, 2014, 7(9257):1-12.
[31] Potters WV, van Ooij P, Marquering H, et al. Volumetric arterial wall shear stress calculation based on cine phase contrast MRI [J]. J Magn Reson Imaging,2015, 41:505-516.
[32] Cheng CP, Parker D, Taylor CA. Quantification of wall shear stress in large blood vessels using lagrangian interpolation functions with cine phase-contrast magnetic resonance imaging [J]. Annals of Biomedical Engineering, 2002, 30:1020-1032.
[33] Misra S, Woodrum DA, Homburger J, et al. Assessment of wall shear stress changes in arteries and veins of arteriovenous polytetrafluoroethylene grafts using magnetic resonance imaging [J]. Cardiovasc Intervent Radiol, 2006, 29:624-629.
[34] 覃开蓉,姜宗来. 一种确定均匀动脉壁面切应力的非线性方法[J].力学学报,2005, 37(2):225-231.
[35] Han KS, Lee SH, Ryu HU, et al. Direct assessment of wall shear stress by signal intensity gradient from time-of-flight magnetic resonance angiography [J].Hindawi Bio Med Research International, 2017, 7087086:1-8.
[36] Mynard JP, Wasserman BA, Steinman DA, et al. Errors in the estimation of wall shear stress by maximum Doppler velocity [J]. Atherosclerosis,2013, 227: 259-266.
[37] Stokholm R, Oyre S, Ringgaard S, et al. Determination of wall shear rate in the human carotid artery by magnetic resonance techniques[J]. Eur J Vasc Endovasc Surg,2000,20: 427-433.
[38] Silber HA, Ouyang P, Bluemke DA, et al. Why is flow-mediated dilation dependent on arterial size? Assessment of the shear stimulus using phase-contrast magnetic resonance imaging [J].Am J Physiol Heart Circ Physiol, 2005, 288(2): H822-H828.
[39] Baskurt OK, Meiselman HJ. Blood rheology and hemodynamics [J]. Semin Thromb Hemost, 2003, 29:435-450.
[40] Doshi SN, Naka KK, Payne N, et al.Flow-mediated dilatation following wrist and upper arm occlusion in humans: the contribution of nitric oxide [J]. Clin Sci (Lond), 2001,101:629-635.
[41] Weaver JPA, Evans A, Walder DN. The effect of increased fibrinogen content on the viscosity of blood [J]. Clin Sci, 1969, 36: 1-10.
[42] Dammers R, Stifft F, Tordoir JHM, et al. Shear stress depends on vascular territory: Comparison between common carotid and brachial artery [J]. J Appl Physiol, 2003, 94:485-489
[43] Samijo SK, Willigers JM, Barkhuysen R, et al. Wall shear stress in the human common carotid artery as function of age and gender [J]. Cardiovascular Research,1998, 39: 515-522.
[44] Mutsaerts HJMM, Palm-Meinders IH, de Craen AJM, et al. Diastolic carotid artery wall shear stress is associated with cerebral infarcts and periventricular white matter lesions [J]. Stroke, 2011, 42:3497-3501.
[45] Jeong SK, Rosenson RS. Shear rate specific blood viscosity and shear stress of carotid artery duplex ultrasonography in patients with lacunar infarction [J]. BMC Neurol, 2013, 13(36): 1-7.
[46] Gijsen FJ, van de Vosse FN, Janssen JD. The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model [J]. J Biomech, 1999, 32:601-608.
[47] Box FM, van der Geest RJ, Rutten MC, et al. The influence of flow, vessel diameter, and non-newtonian blood viscosity on the wall shear stress in a carotid bifurcation model for unsteady flow[J]. Invest Radiol,2005, 40:277-294.
[48] Guyton AC, Hall JE. Textbook of Medical Physiology [M] (10th edition) // Philadelphia: WB Saunders, 2000.
[49] Kim S, Cho YI, Hogenauer WN, et al. A method of isolating surface tension and yield stress effects in a U-shaped scanning capillary-tube viscometer using a Casson model [J]. J Non-Newtonian Fluid Mech, 2002, 103: 205-219.
[50] Oshinski JN, Curtin JL, Loth F. Mean-average wall shear stress measurements in the common carotid artery [J]. J Cardiovasc Magnet Reson, 2006, 8:717-722.
[51] Box FM, van der Geest RJ, van der Grond J, et al. Reproducibility of wall shear stress assessment with the paraboloid method in the internal carotid artery with velocity encoded MRI in healthy young individuals [J]. J Magn Reson Imaging, 2007, 26:598-605.
[52] Gnasso A, Carallo C, Irace C, et al. Association between intima-media thickness and wall shear stress in common carotid arteries in healthy male subjects [J]. Circulation, 1996, 94: 3257-3262.
[53] Nichols W, O’Rourke M. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles [M]. New York:Hodder Arnold, 2005.
[54] Simon AC, Levenson J, Flaud P. Pulsatile flow and oscillating wall shear stress in the brachial artery of normotensive and hypertensive subjects [J]. Cardiovasc Res, 1990, 24(2):129-136.
[55] Stroev PV, Hoskins PR, Easson WJ. Distribution of wall shear rate throughout the arterial tree: A case study [J]. Atherosclerosis, 2007, 191(2): 276-280.
[56] Stalder AF, Russe MF, Frydrychowicz A, et al. Quantitative 2D and 3D phase contrast MRI: Optimized analysis of blood flow and vessel wall parameters [J]. Magnetic Resonance in Medicine, 2008, 60:1218-1231.
[57] Papathanasopoulou P, Zhao S, Kohler U, et al. MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions [J]. Journal of Magnetic Resonance Imaging, 2003, 17:153-162
[58] Pozrikidis C. Introduction to Theoretical andComputational Fluid Dynamics[M] Oxford: Oxford University Press, 1997.
[59] Massey B, Ward-Smith J. Mechanics of fluids [M] // Cheltenham:Stanley Thornes Ltd, 1998.
[60] He X, Ku DN. Pulsatile flow in the human left coronary artery bifurcation: average conditions [J]. J Biomech Eng, 1996, 118: 74-82.
[61] Ku DN, Giddens DP, Zarins CK, et al. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress [J].Arteriosclerosis, 1985, 5:293-302.
[62] Zhang JM, Chua LP, Ghista DN, et al. Numerical investigation and identification of susceptible sites of atherosclerotic lesion formation in a complete coronary artery bypass model[J]. Med Biol Eng Comput, 2008, 46:689-699.
[63] Olgac U, Poulikakos D, Saur SC, et al. Patient-specific three-dimensional simulation of LDL accumulation in a human left coronary artery artery in its healthy and atherosclerotic states[J]. Am J Physiol Heart Circ Physiol, 2009, 296:H1969-H1982.
[64] Himburg HA, Grzybowski DM, Hazel AL, et al. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability [J]. Am J Physiol Heart Circ Physiol, 2004, 286: H1916-H1922.
[65] Peiffer V, Sherwin SJ, Weinberg PD, et al. Computation in the rabbit aorta of a new metric - the transverse wall shear stress - to quantify the multidirectional character of disturbed blood flow [J]. Journal of Biomechanics, 2013, 46:2651-2658.
[66] Pantos I, Patatoukas G, Efstathopoulos EP, et al. In vivo wall shear stress measurements using phase-contrast MRI [J]. Expert Rev Cardiovasc Ther, 2007, 5(5):927-938.
[67] Huston III J, Ehman RL. Comparison of time-of-flight and phase-contrast MR neuroangiographic techniques [J]. Radio Graphics 1993, 13:5-19.
[68] Oelerich M, Lentschig MG, Zunker P, et al. Intracranial vascular stenosis and occlusion: comparison of 3D time-of-flight and 3D phase-contrast MR angiography [J]. Neuroradiology, 1998, 40:567-573.
[69] Stamm AC, Wright CL, Knopp MV, et al. Phase contrast and time-of-flight magnetic resonance angiography of the intracerebral arteries at 1.5, 3 and 7 T [J]. Magnetic Resonance Imaging, 2013, 31:545-549.
[70] Cibis M, Potters WV, Gijsen FJ, et al. The effect of spatial and temporal resolution of cine phase contrast MRI on wall shear stress and oscillatory shear index assessment [J]. PLoS ONE, 2016, 11(9): e0163316.
[71] Long Q, Xu YX, Ariff B, et al. Reconstruction of blood flow patterns in a human carotid bifurcation: a combined CFD and MRI study [J]. J Magn Reson Imaging, 2000, 11:299-311.
[72] Steinman DA, Thomas JB, Ladak HM, et al. Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI [J]. Magn Reson Med, 2002, 47:149-159.
[73] Greve JM, Les AS, Tang BT, et al. Allometric scaling of wall shear stress from mice to humans: quantification using cine phase-contrast MRI and computational fluid dynamics [J]. Am J Physiol Heart Circ Physiol, 2006, 291: H1700-H1708.
[74] Reneman RS, Arts T, Hoeks AP. Wall shear stress-an important determinant of endothelial cell function and structure-in the arterial system in vivo. Discrepancies with theory [J]. J Vasc Res, 2006, 43(3): 251-269.
[75] Yim P, Demarco K, Castro MA, et al. Characterization of shear stress on the wall of the carotid artery using magnetic resonance imaging and computational fluid dynamics [J]. Stud Health Technol Inform, 2005, 113: 412-442.
[76] Harloff A, Berg S, Barker AJ, et al. Wall shear stress distribution at the carotid bifurcation: influence of eversion carotid endarterectomy [J]. Eur Radiol, 2013, 23:3361-3369.
[77] Schnell S, Markl M, Entezari P, et al. k-t GRAPPA accelerated four-dimensional flow MRI inthe Aorta: Effect on scan time, image quality, and quantification of flow and wall shear stress [J]. Magnet Reson Med, 2014, 72:522-533.
[78] Min JK, Koo BK, Erglis A, et al. Effect of image quality on diagnostic accuracy of noninvasive fractional flow reserve: results from the prospective multicenter international DISCOVER-FLOW study [J]. J Cardiovasc Comput Tomogr, 2012, 6:191-199.
[79] Slager CJ, Wentzel JJ, Schuurbiers JC, et al. True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation [J]. Circulation,2000, 102: 511-516.
[80] Schrauwen JTC, Karanasos A, van Ditzhuijzen NS, et al. Influence of the accuracy of angiography-based reconstructions on velocity and wall shear stress computations in coronary bifurcations: a phantom study [J]. PLoS ONE, 2015, 10(12):e0145114.
[81] Brands PJ, Hoeks APG, Hofstra L, et al. A noninvasive method to estimate wall shear rate using ultrasound [J]. Ultrasound Med Biol, 1995, 21:171-185.
[82] Hoeks APG, Samijo SK, Brands PJ, et al. Assessment of wall shear rate in humans: an ultrasound study [J]. J Vasc Invest, 1995, 1:108-117.
[83] Samijo SK, Willigers JM, Brands PJ, et al. Reproducibility of shear rate and shear stress assessment by means of ultrasound in the common carotid artery of young human males and females [J]. Ultrasound Med Biol, 1997, 23:583-590.
[84] Jensen JA, Munk P. A new method for estimation of velocity vectors [J].IEEE Trans Ultrason Ferroelect Freq Control, 1998, 45(3): 837-851.
[85] Jensen JA. A new estimator for vector velocity estimation [J].IEEE Trans Ultrason Ferroelect Freq Control, 2001, 48(4):886-894.
[86] Yiu BYS, Lai SSM, Yu ACH. Vector projectile imaging: Time-resolved dynamic visualization of complex flow patterns [J]. Ultrasound Med Biol, 2014, 40(9): 2295-2309.
[87] Jensen JA, Nikolov SI, Yu AC, et al. Ultrasound vector flow imaging—Part I: Sequential systems [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2016, 63(11):1704-1721.
[88] Jensen JA, Nikolov SI, Yu AC, et al. Ultrasound vector flow imaging—Part II: Parallel systems [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2016, 63(11):1722-1732.
[89] Hansen KL, Udesen J, Gran F, et al. In-vivo examples of flow patterns with the fast vector velocity ultrasound method [J]. Ultraschall Med, 2009, 30(5):471-476.
[90] Hansen KL, Udesen J, Gran F, et al. Fast blood vector velocity imaging using ultrasound: In-vivo examples of complex blood flow in the vascular system [C]//IEEE Ultrason Symp. Beijing:IEEE, 2008: 1068-1071.
[91] Goddi A, Fanizza M, Bortolotto C, et al. Vector flow imaging techniques: An innovative ultrasonographic technique for the study of blood flow [J]. J Clin Ultrasound,2017, 45:582-588.
[92] 杜宜纲,何绪金,朱磊,等. 超声动态向量血流成像的产品化实现[J]. 应用声学,2017, 36(5):462-470.
[93] Poelma C, van der Mijle RME, Mari JM, et al. Ultrasound imaging velocimetry: Toward reliable wall shear stress measurements [J]. Eur J Mech B-Fluid, 2012, 35:70-75.
[94] 朱懿恒,钱明,牛丽丽,等. 基于超声粒子成像技术的大鼠动脉模型血流剪切力测量方法[J]. 生物医学工程学杂志,2014, 31(6):1355-1360.
[95] Zarins CK, Giddens DP, Bharadvaj BK, et al.Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress [J]. Circ Res, 1983, 53: 502-514.
[96] Ku DN, Giddens DP, Phillips DJ, et al. Hemodynamics of the normal human carotid bifurcation: in vitro and in vivo studies [J]. Ultrasound Med Biol, 1985, 11(1): 13-26.
[97] Manbachi A, Hoi Y, Wasserman BA, et al. On the shape of the common carotid artery, with implications for blood velocity profiles [J]. Physiol Meas, 2011, 32(12):1885-1897.
[98] Giddens DP, Zarins CK, Glagov S. The role of fluid mechanics in the localization and detection of atherosclerosis [J]. J Biomech Eng, 1993, 115:588-594.
[99] 张晓娟,颜光涛. 剪切力对血管内皮细胞功能的影响[J]. 中华老年心脑血管病杂志,2003, 5(5): 351-353.
[100] Gnasso A, Irace C, Carallo C, et al. In vivo association between low wall shear stress and plaque in subjects with asymmetrical carotid atherosclerosis [J]. Stroke,1997, 28:993-998.
[101] Friedman MH, Deters OJ, Bargeron CB, et al. Shear-dependent thickening of the human arterial intima [J]. Atherosclerosis, 1986, 60: 161-171.
[102] Wang Y, Qiu J, Luo S, et al. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis [J]. Regenerative Biomaterials, 2016, 257-267.
[103] Li X, Yang Q, Wang Z, et al. Shear Stress in Atherosclerotic Plaque Determination [J]. DNA & Cell Biology, 2014, 33:1-9.
[104] Xing R, Moerman AM, Ridwan Y, et al. Temporal and spatial changes in wall shear stress during atherosclerotic plaque progression in mice [J]. Royal Society Open Science, 2018, 5:171447.
[105] Lee S-W, Antiga L, Steinman DA, et al. Correlations among indicators of disturbed flow at the normal carotid bifurcation [J]. Journal of Biomechanical Engineering, 2009, 131: 061013-1-061013-7.
[106] Zhang Q, Steinman DA, Friedman MH, et al. Use of factor analysis to characterize arterial geometry and predict hemodynamic risk: application to the human carotid bifurcation [J]. Journal of Biomechanical Engineering, 2010, 132: 114505-1.
[107] Markl M, Wegent F, Zech T, et al. In vivo wall shear stress distribution in the carotid artery: Effect of bifurcation geometry, internal carotid artery stenosis, and recanalization therapy [J]. Circ Cardiovasc Imaging, 2010, 3:647-655.
[108] Cheng CP, Herfkens RJ, Taylor CA. Abdominal aortic hemodynamic conditions in healthy subjects aged 50-70 at rest and during lower limb exercise: in vivo quantification using MRI [J]. Atherosclerosis, 2003, 168:323-331.
[109] Oshinski JN, Ku DN, Mukundan S, et al. Determination of wall shear stress in the aorta with the use of MR phase velocity mapping [J]. J Magn Reson Imaging, 1995, 5(6):640-647.
[110] Taylor CA, Cheng CP, Espinosa L A, et al. In vivo quantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise [J]. Annals of Biomedical Engineering, 2002, 30:402-408.
[111] Pedersen EM, Oyre S, Agerb k M, et al. Distribution of early atherosclerotic lesions in the human abdominal aorta correlates with wall shear stresses measured in vivo [J]. Eur J Vasc Endovasc Surg, 1999, 18: 328-333.
[112] Oyre S, Pedersen EM, Ringgaard S, et al. In vivo wall shear stress measured by magnetic resonance velocity mapping in the normal human abdominal aorta [J]. Eur J Vasc Endovasc Surg, 1997, 13: 263-271.
[113] Cheng CP, Herfkens RJ, Taylor CA. Comparison of abdominal aortic hemodynamics between men and women at rest and during lower limb exercise [J]. J Vasc Surg, 2002, 37(1):118-123.
[114] Mahadevia R, Barker AJ, Schnell S, et al. Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy [J]. Circulation, 2014, 129: 673-682.
[115] Meierhofer C, Schneider EP, Lyko C, et al. Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study [J]. European Heart Journal - Cardiovascular Imaging, 2013, 14:797-804.
[116] Frydrychowicz A, Arnold R, Hirtler D, et al. Multidirectional flow analysis by cardiovascular magnetic resonance in aneurysm development following repair of aortic coarctation [J]. Journal of Cardiovascular Magnetic Resonance, 2008, 10:30.
[117] Wentzel JJ, Corti R, Fayad ZA, et al. Does shear stress modulate both plaque progression and regression in the thoracic aorta? [J]. J Am Coll Cardiol, 2005, 45(6):846-854.
[118] Stone PH, Saito S, Takahashi S, et al. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the prediction study [J]. Circulation, 2012, 126:172-181.
[119] Wu SP, Ringgaard S, Oyre S, et al. Wall shear rates differ between the normal carotid, femoral, and brachial arteries: An in vivo MRI study [J]. J Magn Reson Imaging, 2004, 19:188-193.
[120] Schmidt-Trucks ss A, Schmid A, Brunner C, et al. Arterial properties of the carotid and femoral artery in endurance-trained and paraplegic subjects [J]. J Appl Physiol, 2000, 89:1956-1963.
[121] Ene-Iordache B, Semperboni C, Dubini G, et al. Disturbed flow inapatient-specific arteriovenous fistula for hemodialysis: Multidirectional and reciprocating near-wall flow patterns [J]. J Biomech, 2015, 48:2195-2200
[122] 陈鹤鸣,柳臻,韩宜丹,等. 支架参数对血管壁剪切应力的影响[J]. 医用生物力学,2016, 31(1): 8-12.
[123] Caro CG, Fitzgerald JM, Schroter RC. Atheroma and arterial wall shear: Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis [J]. Proc R Soc Lond, 1971, 117:109-159.
[124] Fry DL. Acute vascular endothelial changes associated with increased blood velocity gradients [J]. Circ Res, 1968, 22:165-197
[125] Whitmore RL. Rheology of the circulation [M] // Oxford: Pergamon Press, 1968.
[126] Robertson AJ Jr. Oxygen requirements of the human arterial intima in atherogenesis [J]. Prog Biochem Pharmacol, 1968, 4:305-316.
[127] Fry DL. Certain histological and chemical responses of the vascular interface to acutely induced mechanical stress in the aorta of the dog[J]. Cir Res, 1969, 24:93-108.
[128] Zamir M. The role of shear forces in arterial branching [J]. J Gen Physiol, 1976, 67:213-222.
[129] Glor FP, Ariff B, Hughes AD, et al. Image-based carotid flow reconstruction: a comparison between MRI and ultrasound [J]. Physiol Meas, 2004, 25:1495-1509.
[130] Kohler U, Marshall I, Robertson MB, et al. MRI measurement of wall shear stress vectors in bifurcation models and comparison with CFD predictions [J]. Journal of Magnetic Resonance Imaging, 2001, 14:563-573. |
[1] |
Sun Zheng,Li Yunzhan. Progress of Biological Combined Magneto-Photo-Acoustic Imaging Technologies[J]. Chinese Journal of Biomedical Engineering, 2018, 37(5): 606-615. |
[2] |
Yang Yang, Meng Jie, Wen Tao, Chen Bo, Liu Fei, Gu Ning, Xu Haiyan, Yu Wei, Liu Jian. The Preparation of uPAR-Targeted MRI Probe and its Targetability to Breast Cancer Cells[J]. Chinese Journal of Biomedical Engineering, 2018, 37(4): 481-488. |
|
|
|
|