|
|
Method of US-CT Fusion Based on Electromagnetic Positioning |
Guo Chu1,Liu Da1*,Wu Wenbo2 ,Song Ling2,Zhang Sai1 |
1(School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China) 2(Beijing Baihui Weikang Medical Robot Technology Co., LTD, Beijing 100191, China) |
|
|
Abstract In order to integrate multimodal images information to overcome the inadequacy of single ultrasonic image in ultrasound-guided percutaneous interventional therapy, we proposed a kind of fusion method of real-time ultrasonic image and CT image, aiming to get multimodal images information of patients′ lesions in the interventional therapy. First of all, obtained the magnetic field coordinates and CT image coordinates of 12 lead balls by using the electromagnetic positioning system to register the magnetic coordinate system to the CT image coordinate system by means ofiterative closest point (ICP) algorithm for two point sets. Secondly, electromagnetic positioning system was used to register the coordinate system of the electromagnetic sensor that was attached to the ultrasonic probe to the magnetic coordinate system. Then, using mechanical sizes of the ultrasonic probe to register the ultrasonic coordinate system to the coordinate system of the electromagnetic sensor. At last, through multiple coordinate system transformation between the ultrasonic coordinate system and the CT image coordinate system, real-time ultrasonic image was integrated to the CT image, and the fusion errors were measured in the software. In this method, the fusion error of real-time ultrasonic image and CT image was 0.71±0.03 mm, and the real-time fusion of the two kinds of images can be clearly seen in the software. In conclusion, this method can effectively integrate real-time ultrasonic image to CT image and provide technical support for the precision of interventional therapy.
|
Received: 30 November 2017
|
|
|
|
|
[1] Wu Wenbo, Xue Yingfeng, Wang Dong, et al. Application of 3D imaging in the real-time US-CT fusion navigation for minimal invasive tumor therapy[J]. International Journal of Computer Assisted Radiology & Surgery, 2015, 10(10):1-8. [2] 王修信, 张大力. 多模态医学图像的融合研究[J]. 广西师范大学学报(自然科学版), 2004, 22(2):10-13. [3] Gupta V, Kirili HA, Hendriks EA, et al. Cardiac MR perfusion image processing techniques:A survey[J]. Medical Image Analysis, 2012, 16(4):767-785. [4] Wu Wenbo, Xue Yingfeng, Wang Dong, et al. A simulator for percutaneous hepatic microwave thermal ablation under ultrasound guidance[J]. International Journal of Hyperthermia, 2014, 30(7):429-437. [5] 张凯, 梁萍. 影像引导下介入操作中导航技术的应用综述[J]. 解放军医学院学报, 2017, 38(4):376-378. [6] 周涛, 陆惠玲, 陈志强,等. 多模态医学影像融合识别技术研究进展[J]. 生物医学工程学杂志, 2013(5):1117-1122. [7] Fuller DB, Jin H, Koziol JA, et al. CT-ultrasound fusion prostate brachytherapy: A dynamic dosimetry feedback and improvement method. A report of 54 consecutive cases [J]. Brachytherapy, 2005, 4(3):207-216. [8] 郭昌宇. 超声与CT或MRI融合导航技术在介入诊疗中的临床应用[J]. 中华放射学杂志, 2009, 43(6):625-628. [9] 郑荣琴, 苏中振. CT/MR-超声融合成像新技术在肝癌局部消融中的应用[J]. 实用医学杂志, 2013, 29(21):3449-3451. [10] Wein W, Brunke S, Khamene A, et al. Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention[J]. Medical Image Analysis, 2008, 12(5):577-585. [11] 奚婷婷. 计算机辅助诊断系统中三维CT与超声数据融合技术的研究及实现[D]. 上海:上海交通大学, 2010. [12] 李凯, 苏中振, 郑荣琴,等. 三维超声-CT图像融合评价肝癌消融安全边界[J]. 中华超声影像学杂志, 2012, 21(8):719-722. [13] 杨成帅, 蒋东升, 周辉红,等. 基于光学定位的超声与CT图像融合——颅颌面软组织导航关键技术研究及初步应用[J]. 组织工程与重建外科, 2016, 12(2):98-101. [14] 黄真, 李艳文, 高峰. 空间运动构件姿态的欧拉角表示[J]. 燕山大学学报, 2002, 26(3):189-192. [15] 杨现辉, 王惠南. ICP算法在3D点云配准中的应用研究[J]. 计算机仿真, 2010, 27(8):235-238. [16] Besl PJ, Mckay ND. A method for registration of 3-D shapes[J]. IEEE Trans PAMI, 1992, 14(2):239-256. [17] Solberg OV, Lindseth F, Torp H, et al. Freehand 3D ultrasound reconstruction algorithms—A review[J]. Ultrasound in Medicine & Biology, 2007, 33(7):991-1009. [18] Cleary K, Clifford M, Stoianovici D, et al. Technology improvements for image-guided and minimally invasive spine procedures[J]. IEEE Transactions on. Information Technology in Biomedicine, 2002, 6(4):249-261. [19] Lu Tong, Liang Ping, Wu WenBo, et al. Integration of the Image-Guided Surgery Toolkit (IGSTK) into the Medical Imaging Interaction Toolkit (MITK)[J]. Journal of Digital Imaging, 2012, 25(6):729-737. [20] 任超. 多模态影像融合导航配准速度及配准精准性的实验及初步临床研究[D]. 北京:中国人民解放军医学院, 2016. |
[1] |
Duan Huihong, Gong Jing, Wang Lijia, Li Xinyu, Nie Shengdong. A Review of Segmentation of Pulmonary Airway in Lung CT Scans[J]. Chinese Journal of Biomedical Engineering, 2018, 37(6): 739-748. |
[2] |
Jiang Feng,Ni Dong,Chen Siping,Yao Yuan,Wang Tianfu,Lei Baiying. Placental Maturity Grading via Hybrid Descriptors and Fisher Vector[J]. Chinese Journal of Biomedical Engineering, 2018, 37(5): 521-528. |
|
|
|
|