Abstract:Speech perception by cochlear implants is one of the research hotspots in speech communication and hearing rehabilitation. Because of the limitations of traditional subjective behavioral assessment methods, the mismatch negativity from electroencephalography has been used to objectively assess the performance of speech communication and hearing rehabilitation. The mismatch negativity does not require listeners′ attention modulation, and can provide more objective and accurate research findings when compared with other behavioral experiments. Nowadays, mismatch negativity has been widely used in the field of cochlear implants. This paper reviewed the advances of this field from several aspects, including the principle of cochlear implant, mismatch negativity evaluation method and the state of the art in objectively evaluating cochlear implant speech perception with mismatch negativity. Meanwhile, it also introduced the performance of cochlear implants perception in speech and musical sound, and hearing recovery performance after implantation. The limitations of these methods were discussed, and research directions were summarized.
作者简介: #中国生物医学工程学会会员(Member, Chinese Society of Biomedical Engineering)
引用本文:
徐丹莹, 陈霏. 脑电失匹配负波客观评估人工耳蜗语音感知的综述[J]. 中国生物医学工程学报, 2019, 38(3): 355-366.
Xu Danying, Chen Fei. A Review on the Objective Evaluation of Cochlear Implant Speech Perception with Mismatch Negativity. Chinese Journal of Biomedical Engineering, 2019, 38(3): 355-366.
[1] Rahiman PFK, Jayanthi VS. Low power adder based auditory filter architecture [J]. Scient World J, 2014, 2014: 1-7. [2] Loizou PC. Introduction to cochlear implants [J]. IEEE Eng Med Biol Mag, 1999, 18(1): 32-42. [3] 张华, 王靓, 王硕, 等. 人工耳蜗植入的言语评估 [J]. 中华耳鼻咽喉科杂志, 2004, 39(2): 125-128. [4] Silverman SR, Hirsh IJ. Problems related to the use of speech in clinical audiometry [J]. Ann Otol Rhinol Laryngol, 1955, 64(4): 1234-1244. [5] Wilson RH, Strouse A. Northwestern University Auditory Test No. 6 in multi-talker babble: A preliminary report [J]. J Rehabil Res Dev, 2002, 39(1): 105-114. [6] Owens E, Kessler DK, Raggio MW, et al. Analysis and revision of the minimal auditory capabilities (MAC) battery [J]. Ear Hear, 1985, 6(6): 280-290. [7] Peterson GE, Lehiste I. Revised CNC lists for auditory tests [J]. J Speech Hear Disorders, 1962, 27(1): 62-70. [8] Nilsson M, Soli SD, Sullivan JA. Development of the Hearing in Noise Test for the measurement of speech reception thresholds in quiet and in noise [J]. J Acoust Soc Am, 1994, 95(2): 1085-1099. [9] 冀飞, 郗昕. 汉语普通话噪声中听力测试材料在不同方言正常人中的应用研究 [J]. 听力学及言语疾病杂志, 2006, 14(6): 413-415. [10] 张华, 曹克利. 汉语最低听觉功能测试的设计及初步应用 [J]. 中华耳鼻咽喉头颈外科杂志, 1990, 25(2): 79-82. [11] 梁爽, 刘思诗, 李永新, 等. 听力言语康复在人工耳蜗植入术后的应用及效果评估 [J]. 听力学及言语疾病杂志, 2009, 17(1): 61-63. [12] Näätänen R, Gaillard AWK, Mäntysalo S. Early selective-attention effect on evoked potential reinterpreted [J]. Acta Psychol, 1978, 42(4): 313-329. [13] Näätänen R, Paavilainen P, Rinne T, et al. The mismatch negativity (MMN) in basic research of central auditory processing: A review [J]. Clin Neurophysiol, 2007, 118(12): 2544-2590. [14] Näätänen R, Tervaniemi M, Sussman E, et al. ‘Primitive intelligence’ in the auditory cortex [J]. Trends Neurosci, 2001, 24(5): 283-288. [15] Näätänen R, Picton T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure [J]. Psychophysiology, 1987, 24(4): 375-425. [16] Sams M, Paavilainen P, Alho K, et al. Auditory frequency discrimination and event-related potentials [J]. Electroencephalogr Clin Neurophysiol, 1985, 62(6): 437-448. [17] Lang AH, Eerola O, Korpilahti P, et al. Practical issues in the clinical application of mismatch negativity [J]. Ear Hear, 1995, 16(1): 118-130. [18] Tiitinen H, May P, Reinikainen K, et al. Attentive novelty detection in humans is governed by pre-attentive sensory memory [J]. Nature, 1994, 372: 90-92. [19] Novitski N, Tervaniemi M, Huotilainen M, et al. Frequency discrimination at different frequency levels as indexed by electrophysiological and behavioral measures [J]. Cognitive Brain Res, 2004, 20(1): 26-36. [20] Kraus N, Micco AG, Koch DB, et al. The mismatch negativity cortical evoked potential elicited by speech in cochlear-implant users [J]. Hear Res, 1993, 65(1-2): 118-124. [21] Kelly AS, Purdy SC, Thorne PR. Electrophysiological and speech perception measures of auditory processing in experienced adult cochlear implant users [J]. Clin Neurophysiol, 2005, 116(6): 1235-1246. [22] Rahne T, Ziese M, Rostalski D, et al. Logatome discrimination in cochlear implant users: subjective tests compared to the mismatch negativity [J]. Scient World J, 2010, 10: 329-339. [23] Turgeon C, Lazzouni L, Lepore F, et al. An objective auditory measure to assess speech recognition in adult cochlear implant users [J]. Clin Neurophysiol, 2014, 125(4): 827-835. [24] 杨立军. 人工耳蜗植入者汉语声调前注意加工及与耳蜗植入相关的耳蜗电刺激的研究 [D]. 北京:北京协和医学院, 2008. [25] 康慧, 龚树生, 陈雪清, 等. 人工耳蜗植入者失匹配负波的特征研究 [J]. 首都医科大学学报, 2011, 32(1): 50-54. [26] 杨影, 王丽燕, 赵航, 等. 先天性听力损失儿童的失匹配负波特征初探 [J]. 中国听力语言康复科学杂志, 2016, 14(3): 170-173. [27] 韩琨. 基于MMN的听障儿童塞音音位对识别特征研究 [D]. 上海:华东师范大学, 2016. [28] Lopezvaldes A, Mclaughlin LM, Viani L, et al. Auditory mismatch negativity in cochlear implant users: A window to spectral discrimination [C]//IEEE Engineering in Medicine and Biology Society. Osaka: IEEE, 2013: 3555-3558. [29] Kuo Yuching, Lee Chiaying, Chen Manchun, et al. The impact of spectral resolution on the mismatch response to Mandarin Chinese tones: An ERP study of cochlear implant simulations [J]. Clin Neurophysiol, 2014, 125(8): 1568-1575. [30] Walsh MA, Diehl RL. Formant transition duration and amplitude rise time as cues to the stop/glide distinction [J]. Q J Exp Psychol, 1991, 43(3): 603-620. [31] Moberly AC, Bhat J, Shahin AJ. Acoustic cue weighting by adults with cochlear implants: A mismatch negativity study [J]. Ear Hear, 2016, 37(4): 465-472. [32] Timm L, Agrawal D, Viola FC, et al. Temporal feature perception in cochlear implant users [J]. PLoS ONE, 2012, 7(9): 45375-45385. [33] Stoody TM, Saoji AA, Atcherson SR. Auditory mismatch negativity: detecting spectral contrasts in a modulated noise [J]. Percept Mot Skills, 2011, 113(1): 268-276. [34] Soshi T, Hisanaga S, Kodama N, et al. Event-related potentials for better speech perception in noise by cochlear implant users [J]. Hear Res, 2014, 316: 110-121. [35] Uhlén I, Engström E, Kallioinen P, et al. Using a multi‐feature paradigm to measure mismatch responses to minimal sound contrasts in children with cochlear implants and hearing aids [J]. Scand J Psychol, 2017, 58(5): 409-421. [36] Kraus N, Mcgee T, Carrell TD, et al. Neurophysiologic bases of speech discrimination [J]. Ear Hear, 1995, 16(1): 19-37. [37] Roman S, Canévet G, Marquis P, et al. Relationship between auditory perception skills and mismatch negativity recorded in free field in cochlear-implant users [J]. Hear Res, 2005, 201(1-2): 10-20. [38] Rahne T, Plontke SK, Wagner L. Mismatch negativity (MMN) objectively reflects timbre discrimination thresholds in normal-hearing listeners and cochlear implant users [J]. Brain Res, 2014, 1586: 143-151. [39] Tervaniemi M, Lehtokoski A, Sinkkonen J, et al. Test-retest reliability of mismatch negativity for duration, frequency and intensity changes [J]. Clin Neurophysiol, 1999, 110(8): 1388-1393. [40] Groenen P, Snik A, Broek PVD. On the clinical relevance of mismatch negativity: results from subjects with normal hearing and cochlear implant users [J]. Audiol Neurootol, 1996, 1(2): 112-124. [41] Sharma A, Dorman MF. Central auditory development in children with cochlear implants: clinical implications [J]. Adv Otorhinolaryngol, 2006, 64(10): 66-88. [42] Sharma A, Nash AA, Dorman M. Cortical development, plasticity and re-organization in children with cochlear implants [J]. J Commun Disord, 2009, 42(4): 272-279. [43] Lonka E, Kujala T, Lehtokoski A, et al. Mismatch negativity brain response as an index of speech perception recovery in cochlear-implant recipients [J]. Audiol Neurootol, 2004, 9(3): 160-162. [44] 陈涛, 梁茂金, 郑亿庆, 等. 语后聋患者人工耳蜗植入后短期内失匹配负波的表现 [J]. 听力学及言语疾病杂志, 2012, 20(6): 574-578. [45] Fu Mingfu, Wang Liyan, Zhang Mengchao, et al. A mismatch negativity study in Mandarin-speaking children with sensorineural hearing loss [J]. Int J Pediatr Otorhinolaryngol, 2016, 91: 128-140. [46] Miller S, Zhang Yang, Nelson P. Neural correlates of phonetic learning in postlingually deafened cochlear implant listeners [J]. Ear Hear, 2016, 37(5): 514-528. [47] Ponton CW, Don M. The mismatch negativity in cochlear implant users [J]. Ear Hear, 1995, 16(1): 131-146. [48] Singh S, Liasis A, Rajput K, et al. Event-related potentials in pediatric cochlear implant patients [J]. Ear Hear, 2004, 25(6): 598-610. [49] Zhang Fawen, Hammer T, Banks HL, et al. Mismatch negativity and adaptation measures of the late auditory evoked potential in cochlear implant users [J]. Hear Res, 2011, 275(1-2): 17-29. [50] Lonka E, Relander-Syrjänen K, Johansson R, et al. The mismatch negativity (MMN) brain response to sound frequency changes in adult cochlear implant recipients: a follow-up study [J]. Acta Otolaryngol, 2013, 133(8): 853-857. [51] Liang Maojin, Zhang Xueyuan, Chen Tao, et al. Evaluation of auditory cortical development in the early stages of post cochlear implantation using mismatch negativity measurement [J]. Otol Neurotol, 2014, 35(1): 7-14. [52] 杨影, 孙喜斌. 0~3岁听障儿童听觉言语能力和事件相关电位研究 [D]. 上海:华东师范大学, 2014. [53] Leal MC, Shin YJ, Laborde M, et al. Music perception in adult cochlear implant recipients [J]. Acta Otolaryngol, 2003, 123(7): 826-835. [54] Kong Yingyee, Cruz R, Jones JA, et al. Music perception with temporal cues in acoustic and electric hearing [J]. Ear Hear, 2004, 25(2): 173-185. [55] Gfeller K, Olszewski C, Rychener M, et al. Recognition of “real-world” musical excerpts by cochlear implant recipients and normal-hearing adults [J]. Ear Hear, 2005, 26(3): 237-250. [56] Gfeller K, Turner C, Oleson J, et al. Accuracy of cochlear implant recipients on pitch perception, melody recognition, and speech reception in noise [J]. Ear Hear, 2007, 28(3): 412-423. [57] Cooper WB, Tobey E, Loizou PC. Music perception by cochlear implant and normal hearing listeners as measured by the Montreal Battery for Evaluation of Amusia [J]. Ear Hear, 2008, 29(4): 618-626. [58] Koelsch S, Wittfoth M, Wolf A, et al. Music perception in cochlear implant users: an event-related potential study [J]. Clin Neurophysiol, 2004, 115(4): 966-972. [59] Zhang Fawen, Benson C, Cahn SJ. Cortical encoding of timbre changes in cochlear implant users [J]. J Am Acad Audiol, 2013, 24(1): 46-58. [60] Timm L, Vuust P, Brattico E, et al. Residual neural processing of musical sound features in adult cochlear implant users [J]. Front Hum Neurosci, 2014, 8(181): 1-11. [61] Petersen B, Weed E, Sandmann P, et al. Brain responses to musical feature changes in adolescent cochlear implant users [J]. Front Hum Neurosci, 2015, 9: 1-14. [62] Sandmann P, Kegel A, Eichele T, et al. Neurophysiological evidence of impaired musical sound perception in cochlear-implant users [J]. Clin Neurophysiol, 2010, 121(12): 2070-2082. [63] Zhang Fawen, Benson C, Fu Qianjie. Cortical encoding of pitch contour changes in cochlear implant users: a mismatch negativity study [J]. Audiol Neurootol, 2013, 18(5): 275-288. [64] Galvin JJ, Fu Qianjie, Shannon RV. Melodic contour identification and music perception by cochlear implant users [J]. Ann NY Acad Sci, 2009, 1169(1): 518-533. [65] Yucel E, Sennaroglu G, Belgin E. The family oriented musical training for children with cochlear implants: speech and musical perception results of two year follow-up [J]. Int J Pediatr Otorhinolaryngol, 2009, 73(7): 1043-1052. [66] Hsiao F, Gfeller K. Music perception of cochlear implant recipients with implications for music instruction: A review of the literature [J]. Update Appl Res Music Educ, 2012, 30(2): 5-10. [67] Petersen B, Mortensen MV, Hansen M, et al. Singing in the key of life: A study on effects of musical ear training after cochlear implantation [J]. Psychomusicology, 2012, 22(2): 134-151. [68] Limb CJ, Roy AT. Technological, biological, and acoustical constraints to music perception in cochlear implant users [J]. Hear Res, 2014, 308: 13-26. [69] Rochette F, Moussard A, Bigand E. Music lessons improve auditory perceptual and cognitive performance in deaf children [J]. Front Hum Neurosci, 2014, 8(488): 1-9. [70] Putkinen VJ, Saarikivi KA, Tervaniemi M. Do informal musical activities shape auditory skill development in preschool-age children? [J]. Front Psychol, 2013, 4(572): 1-6. [71] Torppa R, Huotilainen M, Leminen M, et al. Interplay between singing and cortical processing of music: a longitudinal study in children with cochlear implants [J]. Front Psychol, 2014, 5(1389): 1-16. [72] Torppa R, Salo E, Makkonen T, et al. Cortical processing of musical sounds in children with cochlear implants [J]. Clin Neurophysiol, 2012, 123(10): 1966-1979. [73] Micheyl C, Carlyon RP, Gutschalk A, et al. The role of auditory cortex in the formation of auditory streams [J]. Hear Res, 2007, 229(1-2): 116-131. [74] Snyder JS, Alain C. Toward a neurophysiological theory of auditory stream segregation [J]. Psychol Bull, 2007, 133(5): 780-799. [75] Friesen LM, Tremblay KL. Acoustic change complexes recorded in adult cochlear implant listeners [J]. Ear Hear, 2006, 27(6): 678-685. [76] Tremblay KL, Kalstein L, Billings CJ, et al. The neural representation of consonant-vowel transitions in adults who wear hearing aids [J]. Trends Amplif, 2006, 10(3): 155-162. [77] Mathew R, Undurraga J, Li G, et al. Objective assessment of electrode discrimination with the auditory change complex in adult cochlear implant users [J]. Hear Res, 2017, 354: 86-101.