网站首页            期刊简介             编委会             投稿指南             期刊订阅             下载中心             在线留言            联系我们             English
  2025年1月6日 星期一  
文章快速检索
中国生物医学工程学报  2019, Vol. 38 Issue (3): 273-280    DOI: 10.3969/j.issn.0258-8021.2019.03.003
  论著 本期目录 | 过刊浏览 | 高级检索 |
基于加权复杂网络度熵和的癫痫发作检测方法
张汉勇, 孟庆芳*, 杜蕾, 刘明敏
(济南大学信息科学与工程学院, 山东省网络环境智能计算技术重点实验室,济南 250022)
Epileptic Seizure Detection Based on theSum of Degree and Entropy of Weighted Complex Network
Zhang Hanyong, Meng Qingfang*, Du Lei, Liu Mingmin
(Shandong Provincial Key Laboratory of Network Based Intelligent Computing, School of Information Science and Engineering, University of Jinan, Jinan 250022, China)
全文: PDF (3345 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 癫痫发作检测一直是一项富有挑战性的工作,随着癫痫发病率的增加,高性能癫痫自动检测算法在临床上可以减轻医务工作者的工作量,具有重要的临床医学研究意义。提出基于加权水平可视图的癫痫检测新方法。首先利用加权水平可视图将单通道脑电信号转化为复杂网络,并提取生成的复杂网络的度的平方和权重度分布熵两个特征;最后将两个特征之和作为单特征输入到线性分类器中,用来识别癫痫间歇期和发作期信号。对波恩大学的癫痫脑电数据集进行实验,评价所提出的检测算法的性能。使用该癫痫脑电数据集间歇期和发作期各100个实验样本,样本长度为1 024。实验结果表明,所提出的方法具有较高的分类精度,可达到98.5%。由于分类的特征为单特征,所以更加简单高效,可用于癫痫发作在线自动检测。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张汉勇
孟庆芳
杜蕾
刘明敏
关键词 癫痫发作检测脑电信号复杂网络加权水平可视图    
Abstract:Epileptic seizure detection has always been a challenging task. With the increasing of epilepsy, high-performance epileptic automatic detection algorithm can reduce the workload of medical workers and has important clinical research significance. In this paper we proposed a new seizure detection method based on weighted horizontal visibility graph (WHVG). Firstly, the single channel electroencephalogram (EEG) signal was transformed into complex network by using WHVG. Then, the square of degree and weighted degree entropy of the complex network was extracted. Finally, the sum of this two extracted features was used as a single feature. The single feature was inputted into a linear classifier to identify interictal and ictal signals. The experiment evaluating the performance of proposed method was conducted on the epileptic EEG dataset of the University of Bonn. This experiment used 100 samples in interictal and 100 samples in ictal and each sample contains 1024 points. Experimental results showed that the proposed method had high classification accuracy, which was up to 98.5%. In addition, the feature used in the method was a single feature that was more simple and efficient. In conclusion, the proposed method was promising for uses in online automatic epileptic seizure detection.
Key wordsepileptic seizure detection    EEG signal    complex network    weighted horizontal visibility graph
收稿日期: 2018-03-22     
PACS:  R318  
基金资助:国家自然科学基金(61671220,61201428)
通讯作者: E-mail: ise_mengqf@ujn.edu.cn   
引用本文:   
张汉勇, 孟庆芳, 杜蕾, 刘明敏. 基于加权复杂网络度熵和的癫痫发作检测方法[J]. 中国生物医学工程学报, 2019, 38(3): 273-280.
Zhang Hanyong, Meng Qingfang, Du Lei, Liu Mingmin. Epileptic Seizure Detection Based on theSum of Degree and Entropy of Weighted Complex Network. Chinese Journal of Biomedical Engineering, 2019, 38(3): 273-280.
链接本文:  
http://cjbme.csbme.org/CN/10.3969/j.issn.0258-8021.2019.03.003     或     http://cjbme.csbme.org/CN/Y2019/V38/I3/273
版权所有 © 2015 《中国生物医学工程学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发