Abstract:In a number of studies in the field of medicine and biology, it has been an important issue faced and being researched by academia, to separate different kinds of cells effectively. If we can separate different types of cells effectively, it will bring great convenience and benefit to the diagnosis and treatment of many diseases, as well as bring breakthrough to medicine and biology. At present, traditional cell separation and screening methods can be divided into two categories: labeling method and nonlabeling method. With the development of microfluidics, microfluidic chip is becoming more and more widely used in the field of cell separation. This paper, starting from the research history and progress of microfluidics, combining with comparison of existing traditional cell separation methods and microfluidic technology, provided a review and introduction of microfluidics usage and development in the field of cell separation.
鲍小凡 刘冉* 刘静. 面向细胞分离的微流控技术[J]. 中国生物医学工程学报, 2013, 32(2): 226-238.
BAO Xiao Fan LIU Ran* LIU Jing. Microfluidic Technology for Cell Separation. journal1, 2013, 32(2): 226-238.
[1]杨玉生, 孙俊英, 朱伟, 等. 松质骨源性人成骨细胞的分离培养和细胞密度效应[J]. 中国组织工程研究与临床康复, 2007, 11: 431-434.
[2]饶伟, 刘静. 微全医院系统——构建大幅降低医患成本的全新医疗装备模式[J]. 科技导报, 2006, 24(10): 42-49.
[3]袁宇辰,刘冉, 刘静. 微创诊断技术在医学中的研究与应用[J]. 科技导报, 2009, 27(15): 109-115.
[4]顾庆礼, 张菁, 张健. 血细胞的Percoll不连续密度梯度分离法[J]. 苏州医学院学报, 1991, 11(01): 50-52.
[5]陈颖, 沈敏, 刘宝林. 肿瘤干细胞分离方法的研究进展[J]. 放射免疫学杂志, 2010,23(3): 312-314.
[6]李俊宪, 孙恒赟, 袁捷, 等. 流式细胞仪分选纯化人脂肪干细胞体外成骨活性的实验研究[J]. 组织工程与重建外科杂志, 2010,6(6): 311-314.
[7]Balagaddé FK, You L, Hansen CL.et al. Longterm monitoring of bacteria undergoing programmed population control in a microchemostat [J]. Science,2005, 309:137-140.
[8]Gravesen P, Branebjerg J, Jensen OS. MicrofluidicsA review [J]. J of Micromech Microeng,1993,3: 168-182.
[9]Manz A. Planar chips technology for miniaturization and integration of separation techniques into monitoring systemscapillary electrophoresis on a chip [J]. Chromatog,1992,593: 253-258.
[10]Whitesides GM. The Origins and the Future of Microfluidics [J]. Nature, 2006,442: 368-373.
[11]Terry SC, Jerman JH, Angell JB. A gas chromatographic air analyzer fabricated on a silicon wafer [J]. IEEE Trans Electron Devices,1979,26: 1880-1886.[12]Tuckerman DB, Pease RFW. Highperformance heat sinking for VLSI [J]. IEEE Electron Device Lett, 1981,2:126-129.
[13]Zdeblick MJ, Barth PW, Angell JA. Microminiature fluidic amplifier [J]. Tech Digest IEEE SolidState Sensor and Actuator Workhop, 1988,15(4):427-433.
[14]Bassous E, Taub HH, Kuhn L. Ink jet printing nozzle arrays etched in silicon [J]. Appl Phys Lett, 1977,31:135-137.
[15]Petersen KE, Fabrication of an integrated planar silicon inkjet structure [J]. IEEE Trans Electron Devices, 1979,26: 1918-1920.
[16]Petersen KE. Silicon as a mechanical material Proc [J]. IEEE, 1983,70: 420-457.
[17]van de Pol FCM,Branebjerg J. Micro liquidhandling devicesa review Proc [J]. Micro System Technologies, 1990,90:799-805.
[18]杨焕明. 21世纪医学、生物学的蓝图──人类基因组计划 [J]. 科技导报. 1996,09: 9-18.
[19]Mijatovic D, Eijkel JCT, van den Berg A. Technologies for nanofluidic systems: topdown vs. bottomup a review [J]. Lab Chip, 2005, 5:492-500.
[20]Czaplewski DA, Kameoka J, Mathers R, et al. Nanofluidic channels with elliptical cross sections formed using a nonlithographic process [J]. Appl Phys Lett, 2003,83:4836-4838.
[21]Ng JMK, Gitlin I, Stroock AD,et al. Components for integrated poly(dimethylsiloxane) microfluidic systems [J]. Electrophoresis, 2003,23:3461-3473.
[22]Whitesides GM, Stroock AD. Flexible methods for microfluidics [J]. Phys, 2001,54: 42-48.
[23]Tiren J, Tenerz Land Hok B. A batchfabricated nonreverse valve with cantilever beam manufactured by micromachining of silicon [J]. Sensors Acluators, 1989,18:89-96.[24]Huff MA, Mettner MS, Lober TA, et al. A pressurebalanced electrostaticallyactuated microvalve [C]// Huff, MA, eds. Tech Digest IEEE SolidState Sensor and Actuator Workshop. New York: IEEE. 1900: 123-127.
[25]Jerman JH. Electricallyactivated, normallyclosed diaphragm valves [C]// Jerman H, eds. Tech Digest IEEE Transducers. New York: IEEE. 1991: 1045-1048.
[26]Sondergard O, Gravesen P. Flow characteristic of a micromachined diaphragm valve designed for liquid flows above 1 ml/min [J]. Journal of Micromechanics and Microengineering, 1993,3:236-238.
[27]Miyake R, Lammerink TSJ, Elwenspoek M, et al. Micro mixer with fast diffusion [C]// Miyake R, eds. Micro Electro Mechanical Systems. New York: IEEE. 1993:248-253.
[28]Garstecki P, Fischbach MA, Whitesides GM. Design for mixing using bubbles in branched microfluidic channels [J]. Appl Phys Lett, 2005, 86(24): 244108-244108-3.
[29]Gass V, van der Schoot BH, de Rooij NF. Nanofluid handling by microflowsensor based on drag force measurements[C]// Gass V., eds. Micro Electro Mechanical Systems. New York: IEEE. 1993:67-72.
[30]Zengerle R, Richter M, Brosinger F, et al. Performance simulation of microminiaturized membrane pumps [C]//Melley D, eds. SolidState Sensors and Actuators . New York: IEEE.1993:106-109.
[31]http://www.gmallerg.com.tw/index.php?ap=apps&p1=5&p2=428&mode=watch
[32]Hansen CL, Skordalakes E, Berger Jm, et al. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion [J]. Proc Natl Acad Sci USA, 2002,99: 16531-16536.
[33]Zheng B, Tice JD, Roach LS, et al. A dropletbased, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapordiffusion methods with onchip Xray diffraction[J]. Chem Int Ed,2004, 43: 2508-2511.
[34]Ramsey RS, Ramsey JM. Generating electrospray from microchip devices using electroosmotic pumping [J]. Anal Chem,1997,69: 1174-1178.
[35]Dittrich PS, Manz A. Labonachip: microfluidics in drug discovery [J]. Nature Rev Drug Discov, 2006,5: 210-218.
[36]Sia SK, Whitesides G.M. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies [J]. Electrophoresis, 2003,24: 3563-3576.
[37]Wheeler AR. Microfluidic device for singlecell analysis [J]. Anal Chem, 2003,75: 3581-3586.
[38]Werdich AA. A microfluidic device to confine a single cardiac myocyte in a subnanoliter volume on planar microelectrodes for extracellular potential recordings [J]. Lab Chip,2004, 4: 357-362.
[39]Dittrich PS, Manz A. Singlemolecule fluorescence detection in microfluidic channelsthe Holy Grail in μTAS [J]. Anal Bioanal Chem, 2005,382: 1771-1782.
[40]Stavis SM, Edel JB, Samiee KT, et al. Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel [J]. Lab Chip, 2005,5: 337-343.
[41]Lee CC. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics [J]. Science, 2005,310: 1793-1796.
[42]Hung PJ, Lee PJ, Sabounchi P, et al. Continuous perfusion microfluidic cell culture array for highthroughput cellbased assays [J]. Biotechnol Bioeng, 2005,89: 1-8.
[43]Chung BG. Human neural stem cell growth and differentiation in a gradientgenerating microfluidic device [J]. Lab Chip, 2005, 5: 401-406.
[44]Taylor AM. Microfluidic multicompartment device for neuroscience research [J]. Langmuir,2003, 19: 1551-1556.
[45]Walker GM. Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator [J]. Lab Chip, 2005,5: 611-618.
[46]Takayama S. Selective chemical treatment of cellular microdomains using multiple laminar streams [J]. Chem Biol, 2003,10: 123-130.
[47]Lu H. Microfluidic shear devices for quantitative analysis of cell adhesion [J]. Anal Chem, 2004,76: 5257-5264.
[48]McClain MA. Microfluidic devices for the highthroughput chemical analysis of cells [J]. Anal Chem, 2003,75: 5646-5655.
[49]Cho BS. Passively driven integrated microfluidic system for separation of motile sperm [J]. Anal Chem, 2003,75: 1671-1675.
[50]Walters EM, Clark SG, Beebe DJ, et al. Mammalian embryo culture in a microfluidic device [J]. Methods Mol Biol, 2004,254: 375-382.
[51]Glasgow IK. Handling individual mammalian embryos using microfluidics [J]. IEEE Trans Biomed Eng, 2001, 48: 570-578.
[52]Lucchetta EM, Lee JH, Fu LA, et al. Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics [J]. Nature,2005, 434: 1134-1138.
[53]Markx GH, Pethig R. Dielectrophoretic seperation of cells: continuous seperation. biotechnol [J]. Bioeng, 1995,45: 337-343.
[54]Pethig R. Dielectric and electronic properties of biological materials [M]. Chichester: Wiley, 1979:52-78.
[55]Becker FF, Wang XB, Huang Y, et al. Separation of human breast cancer cells from blood by differential dielectric affinity [J]. Proceedings of the National Academy of Sciences, 1995, 92(3): 860-864.
[56]Aldaeus F, Lin Y, Amberg G, et al. Multistep dielectrophoresis for separation of particles [J]. Journal of Chromatography A, 2006, 1131(1/2): 261-266.
[57]Chen DF, Du H, Li HW. Bioparticle separation and manipulation using dielectrophoresis [J].. sensors and actuators A, 2007, 133(2): 329-334.
[58]Golan S, Elata D, Orenstein M, et al.. Floating electrode dielectrophoresis [J]. Electrophoresis, 2006, 27(24): 4919-4926.
[59]Zhou H, White RL, Tilton DR. The role of electrode impedance and electrode geometry in the design of microelectrode systems [J]. Journal of Colloid and Interface Science, 2005, 5: 179-191.
[60]倪中华, 朱树存. 基于介电泳的生物粒子分离芯片 [J].东南大学学报(自然科学版), 2005,35(5): 724-728.
[61]Gascoyne PR, Vykoukal J. Particle separation by dielectrophoresis [J]. Electrophoresis, 2002, 23(13): 1973-1983.
[62]徐溢, 曹强, 曾雪,等. 阵列式对电极介电电泳芯片及其用于细胞分离富集研究[J]. 高等学校化学学报. 2009,5(30): 876-881.
[63]Doh I, Cho YH. A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process [J]. Sens Actuators A,2005, 121: 59-65.
[64]Li Y, Dalton C, Crabtree HJ, et al. Continuous dielectrophoretic cell seperation microfluidic device [J]. Lab Chip, 2007,7:239-248.
[65]Choi S, Park JK. Microfluidic system for dielectrophoretic seoeration based on a trapezoidal electrode array [J]. Lab Chip, 2007,5: 1161-1167.
[66]Lin JT, Yeow JT .Enhancing dielectrophoresis effect through novel electrode geometry [J]. Biomed. Microdevices, 2007,9: 823-831.
[67]Cummings EB. Streaming dielectrophoresis for continuousflow microfluidic devices [J]. IEEE Eng Med Biol Mag,2003, 22: 75-84.
[68]Durr M, Kentsch J, Muller T, et al. Microdevices for manipulation and accumulation of micro and nanoparticles by dielectrophoresis [J]. Electrophoresis, 2003,24: 722-731.
[69]Han KH, Frazier AB .Lateraldriven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium [J]. Lab Chip, 2008,8:1079-1086.[70]Leong K, Boardman AK, Ma H, et al. Singlecell patterning and adhesion on chemically engineered poly(dimethylsiloxane) surface [J]. Langmuir, 2009, 25: 4615-4620.
[71]FL YNN G, Hankett T J, Mehale A P, et al.. Magnetically responsive photosensitizing reagents for possible use in photoradiation therapy [J]. Career Left. 1994, 7(1-3): 109-114.
[72]A. Rembauma, R.C.K. Yena, D.H. Kempnera, J. Ugelstad. Cell labeling and magnetic separation by means of immunoreagents based on polyacrolein microspheres [J]. Journal of Immunological Methods, 1982, 52:341-351.
[73]Furdui VI, Harrison DJ. Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems [J]. Lab Chip, 2004,4: 614-18.
[74]V. I. Furdui, J. K. Kariuki, D. Jed Harrison. Microfabricated electrolysis pump system for isolating rare cells in blood [J]. Micromech. Microeng., 2003, 13: 164-170.
[75]Liu RH, Yang J, Lenigk R, et al. Selfcontained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection [J]. Anal Chem, 2004, 76: 1824-1831.
[76]Mohamed H, McCurdy LD, Szarowski DH, et al. Development of a rare cell fractionation device: application for cancer detection [J]. IEEE Transactions on Nanobioscience, 2004, 3:251-256.
[77]杨静, 杨军, 许蓉,等. 一种微流控细胞分离芯片及其流场分析 [J]. 仪器仪表学报, 2009,7(30): 1508-1511.
[78]Suh RS, Zhu X, Phadke N, et al.. IVF within microfluidic channels requires lower total numbers and lower concentrations of sperm. Human Reproduction [J]. 2006, 212):477-483.
[79]Cho BS, Schuster TG, Zhu X, rt al. Passively Driven Integrated Microfluidic System for Separation of Motile Sperm [J]. Anal Chem,2003,75:1671-1675.
[80]Bhagat AA, Kuntaegowdanahalli SS, Papautsky I. Enhanced particle filtration in straight microchannels using shearmodulated inertial migration [J]. Phys Fluids, 2008, 2: 101702.
[81]Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I. Continuous particle separation in spiral microchannels using dean flows and differential migration [J]. Lab Chip, 2008, 8: 1906-1914.
[82]Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, et al. Inertial microfluidics for continuous particle separation in spiral microchannels [J]. Lab Chip, 2009, 9: 2973-2980.
[83]Di Carlo D. Inertial microfluidics [J]. Lab Chip, 2009, 9: 3038-3046.
[84]Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I. Inertial microfluidics for continuous particle filtration and extraction [J]. Microfluid Nanofluid, 2009, 7: 217-226.
[85]Mach AJ, Di Carlo D. Continuous scalable blood filtration device using inertial microfluidics [J]. Biotechnol Bioeng, 2010, 107: 302-311.
[86]Russom A, Gupta AK, Nagrath S, et al. Differential inertial focusing of particles in curved lowaspectratio microchannels [J]. New J Phys, 2009, 11: 075025.
[87]黄炜东, 张何, 徐涛, 等. 基于惯性微流原理的微流控芯片用于血浆分离 [J]. 科学通报. 2011,21(56): 1711-1719.
[88]Di Carlo D, Edd JF, Irimia D, et al. Equilibrium separation and filtration of particles using differential inertial focusing [J]. Anal Chem, 2008, 80: 2204-2211.
[89]Di Carlo D, Irimia D, Tompkins RG, et al. Continuous inertial focusing, ordering, and separation of particles in microchannels [J]. Proc Natl Acad Sci USA, 2007, 104: 18892-18897.
[90]Gossett DR, Di Carlo D. Particle focusing mechanisms in curving confined flows [J]. Anal Chem, 2009, 81: 8459-8465.
[91]Weibel DB. Torqueactuated valves for microfluidics [J]. Anal Chem, 2005, 77:4726-4733.