原子力显微镜测量心肌细胞杨氏模量的研究现状
同济大学附属东方医院心脏医学部,上海 200120
Research Status of the Measurement for Young’s Modulus of Myocardial Cells Using Atomic Force Microscopy
Heart Center of Shanghai East Hospital Affiliated to Tongji University, Shanghai 200120
摘要 自原子力显微镜面世以来,已越来越广泛地被应用于各个领域的研究,尤其在细胞的微观领域有其独特的优势与价值。文中评述了近些年利用其测量表征细胞弹性的杨氏模量的方法和进展,并着重论述杨氏模量在心血管疾病中的应用研究。心肌细胞的杨氏模量不仅呈现随年龄的增长而增大的趋势,且与心血管的疾病有明显的相关关系。因此,测量心肌细胞的杨氏模量可以研究病变心肌细胞的物理改变,有助于了解心脏疾病,尤其是心衰及心梗的病理变化。
关键词 :
杨氏模量 ,
原子力显微镜 ,
心肌细胞 ,
力学特性 ,
分子生物学
Abstract :Since the first atomic force microscopy (AFM) came into the world, it has been used in various fields, especially in cellular studies because of its own advantages. This article reviews not only AFM application in in measuring the Young’s modulus that is a parameter reflecting cells stiffness, but also the research progress of Young’s modulus in heart diseases. More researches reported the Young’s modulus increases along with the age and is related to heart diseases. It is helpful for understanding mechanical and pathologic changes in heart diseases, especially in heart failure and myocardial infarction in myocardial cells by determination of Young’s modulus.
Key words :
Young’s modulus
atomic forcefluorescence microscopy (AFM)
myocardial cell
mechanics property
molecular biology
基金资助: 上海市浦东新区科技发展基金创新资金(PKJ2010Y16);上海市卫生局青年基金(2010Y012);上海市浦东新区卫生系统优秀青年医学人才项目(PW Rq201004)
[1]叶志义, 张丽. 原子力显微镜研究细胞弹性的数据分析方法 [J]. 生命科学, 2009, 21(8): 817-822.
[2]叶志义, 范霞. 原子力显微镜在细胞弹性研究中的应用 [J]. 生命科学, 2009, 21(1): 156-162.
[3]陈茜, 杨筱曦, 蔡小芳,等. 原子力显微镜对人羊膜上皮细胞的观察 [J]. 生物技术, 2010, 20(2): 39-42.
[4]雒祜芳, 曹辉, 高立民,等. 细胞膜的杨氏模量对膜共振频率的影响 [J]. 压电与声光, 2011, 33(5): 764-767.
[5]Cai Xiaofang, Gao Shijun, Cai Jiye, et al. Artesunate Induced morphylogical and mechanical changes of jurtat cell studied by AFM [J]. Scanning, 2009, 39: 83-89.
[6]蔡小芳, 杨筱曦, 蔡继业,等. 正常人眼角膜上皮细胞的原子力显微镜观察 [J]. 分析测试学报, 2009, 28(8): 881-885.
[7]Horber JKH, Miles MJ. Scanning probe evolution in biology [J]. Science, 2003, 302(5647): 1002-1005.
[8]Fritz M, Radmacher M, Gaub HE. Granula motion and membrane spreading during activation of human platelets imaged by atomic force microscopy [J]. Biophys J, 1994, 66: 1328-1334.
[9]Parot P, Dufrene YF, Hinterdorfer P, et al. Past, present and future of atomic force microscopy in life sciences and medicine [J]. J Mol Recognit, 2007, 20(6): 418-431.
[10]Henderson E, Haydon PG, Sakaguchi DS. Actin filament dynamics in living glial cells imaged by atomic force microscopy [J]. Science, 1992, 257(5078): 1944-1946.
[11]Hu M, Wang J, Cai J, et al. Analysis of sodium benzoate biotoxicity using atomic force microscope [J]. Chin J Biotechnol, 2008, 24(8): 1428-1432.
[12]Schoenenberger CA, Hoh JH. Slow cellular dynamics in MDCK and R5 cells monitored by timelapse atomic force microscopy [J]. Biophys, 1994, 67(2): 929-936.
[13].Wu Yangzhe, Cai Jiye, Cheng Longqiu, et al. Atomic force microscope tracking observation of Chinese hamster ovarycell mitosis [J]. Micron, 2006, 37(2): 139-145.
[14].汤翔宇,朱文珍. MR弹性成像及其研究进展[C]// 第三届放射青年医师学术论坛论文集. 杭州: 中华医学会放射学分会, 2009:256-259.
[15].Gaboriaud E, Dufrene YF. Atomic force microscopy of microbial cells: Application to nanomechanical properties, surface forces and molecular recognition forces [J]. Colloids Surf B Biointerfaces, 2007, 54(1): 10-19.
[16].Berry MF. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance [J]. Am J Physiol Heart Cire Physiol, 2006, 290(6): 2196-2203.
[17]Hoh JH, Schoenenberger CA. Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy [J]. J Cell Sci, 1994, 107( Pt 5): 1105-1114. [18]孙嘉伦. 成骨细胞在力学刺激下力学性质及细胞骨架的变化[D]. 天津: 南开大学, 2009.
[19]Balint Z, Krizbai IA, Wilhe1m I, et al. Changes induced by hyperosmotic mannitol in cerebral endothelial cells: an atomic force microscopic study [J]. Eur Biophys J, 2007, 36(2): 113-120.
[20]Cross SE, Jin YS, Rao JY, et al. Nanomechanical analysis of cells from cancer patients [J]. Nat Nanotechnol, 2007, 2(12): 780-783.
[21]Chouinard JA, Grenier G, Khalil A, et al. OxidizedLDL induce morphological changes and increase stifness of endot helial cells [J]. Exp Cell Res, 2008, 314(16): 3007-3016.
[22]Martens JC, Radmacher M. Softing of the actin cytoskeleton by inhibition of myosin Ⅱ [J]. Pflugers Arch, 2008, 456(1): 95-100.
[23]Lekka M, Fomal M, PykaFosciak G, et al. Erythrocyte stiffness probed using atomic force microscopy [J]. Biorheology, 2005, 42(4): 307-317.
[24]Lam WA, Rosenbluth MJ, Fletcher DA. Chemotherapy exposure increase leukemia cell stiffness. Blood [J]. 2007, 109(8): 3505-3508.
[25]Steinhauser E, Diehl P, Hadaller M, et al. Biomechanical investigation of the effect of high hydrostatic pressure treatment on the mechanical properties of human bone [J]. J Bimed Mater Res B Appl Biomater, 2006, 76(1): 130-135.
[26].吕纯洁, 姚永玉. 不同刚度培养基上细胞粘附形变的数值计算 [J]. 力学季刊, 2011, 32(3): 386-391.
[27]Dornke J, Dannohl S, Parak WJ. Substrate dependent differences in morphology and elasticity of living osteoblasts investigated by atomic force microscopy [J]. Colloids Surf B Biointerfaces, 2000, 19(4): 367-379.
[28]Abu-Lail NI, Camesano TA. The effect of solvent polarity on the molecular surface properties and adhesion of Escherichia coli [J]. Colloids Surf B:Biointerfaces, 2006, 51: 62-70.
[29]Mathur AB, Collinsworth AM, Reichert WM, et al. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy [J]. J Biomech, 2001, 34: 1545-1553.
[30]Rotsch C, Radmacher M. Druginduced changes of cytoskeletal structure an d mechanics in fibroblasts: aJ1 atomic force microscopy study [J]. Biophys J, 2000, 78: 520-535. [31]Venugopal JR, Prabhakaran MP, Mukherjee S. Biomaterial strategies for alleviation of myocardial infarction [J]. J R Soc Interface, 2012, 9(66): 1-19.
[32]Yin Shizhuo, Zhang Xueqian, Zhan Chun. Measuring singlecardiacmyocyte contractile force via moving a magnetic bead [J]. Biophys J, 2005, 88(2): 1489-1495.
[33]Azeloglu EU, Costa KD. Dynamic AFM elastography reveals phase dependent mechanical heterogeneity of beating cardiac myocytes [J]. Conf Proc IEEE Eng Med Biol Soc, 2009, 2009: 7180-7183.
[34]Lieber SC, Aubry N, Pain J, et al. Aging increases stiffness of cardiac myocytes measured by atomic force microscopy nanoindentation [J]. Am J Physiol Heart Circ Physiol, 2004, 287(2): H645-H651.
[35]Hiesinger W, Brukman MJ, McCormick RC, et al. Myocardial tissue elastic properties determined by atomic force microscopy following SDF-1α angiogenic therapy for acute myocardial infarction [J]. J Thorac Cardiovasc Surg, 2012, 143(4): 962-966.
[36]Berry MF, Engler AJ, Woo YJ, et al. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance[J]. American Journal of Physiology, 2006, 290(6): H2196-H2203.
[37]Hoffmeister BK, Handley SM, Wickline SA, et al. Ultrasonic determination of the anisotropy of Young’s modulus of fixed tendon and fixed myocardium [J]. J Acoust Soc Am, 1996, 100(6): 3933-3340.
[38]Baldewsing RA, Mastik F, Schaar JA, et al. Young's modulus reconstruction of vulnerable atherosclerotic plaque components using deformable curves [J]. Ultrasound Med Biol, 2006, 32(2): 201-210.
[39]Chiaramida SA, Dong R, Vetter FJ, et al. Hemodynamic effects of infarct location in left ventricular wall based on an integrated finite element and circulatory model [J]. Computers in Cardiology, 2005, 25(4): 797-800.
[40]Forrester JS, Diamond G, Parmley WW, et al. Early increase in left ventricular compliance after myocardial infarction [J]. J Clin Invest, 1972, 51(3): 598-603.