摘要利用微状态分析方法,在静息状态下的脑电图(EEG)尺度上探究自闭症谱系障碍(ASD)儿童与正常儿童(TD)在脑机制上的差异。根据Cartool中的准则和不同微状态类别的数目对于被试者EEG数据的解释程度,确定微状态类别的数目为4;使用原子化与凝聚层次聚类算法,分割出个人水平和组水平上的微状态类别,分别标记为微状态A、B、C和D。然后根据这4类微状态的地形图和EEG数据各时间点的GEV相关性,将数据拟合回EEG数据,最终得到微状态时间序列,提取时域上的参数特征,比较ASD组和TD组的差异。选取的时间参数为平均持续时间、发生频率、时间覆盖率和转移概率,并通过计算马尔可夫模型的方法探究微状态序列的独立性。结果表明,在ASD组vs TD组中表现有统计差异(P<0.05)的微状态时间参数有:持续时间 (A:0.110±0.013 vs 0.180±0.048,C:0.140±0.024 vs 0.220±0.067,D:0.130±0.050 vs 0.190±0.037,单位:s)、时间覆盖率 (A:22.0±5.4 vs 27.0±7.2,B:27.0±4.7 vs 18.0±5.5,单位:%)、发生频率 (A:1.93±0.52 vs 1.55±0.22,B:2.08±0.46 vs 1.39±0.32,C:2.10±0.49 vs 1.47±0.30,D:1.78±0.19 vs 1.27±0.27,单位:次/s),且卡方检验不支持微状态类别之间在时间序列上是独立的零假设(P<0.01),提示微状态类别之间存在依赖性以及信息共享性。本研究为自闭症的评估提供了客观指标和科学依据。
Abstract:This study aimed to use the microstate analysis method to investigate the differences in brain mechanism between children with autism spectrum disorder (ASD) and healthy children on the electroencephalography (EEG) scale in the resting state. According to the guidelines in Cartool and the degree of interpretation of the participants' EEG data by the number of different microstates, the number of microstates was determined to be 4. Using atomize & agglomerate hierarchical clustering algorithms, the microstates at the individual level and group level were segmented and labeled as microstate Class A, microstate Class B, microstate Class C, and microstate Class D. Next, fit the data back to the EEG data according to the topographic maps of the four classes of microstates and the level of the GEV correlation of the EEG data at each time point, and finally obtained the microstate time series, and extracted the characteristics in the time domain to compare the differences between the ASD group and the TD group. The time parameters selected in this study included average duration, frequency of occurrence, time coverage and transition probability. And the method of calculating the Markov model explored the independence of the microstates sequence. The microstate time parameters that showed there were differences (P<0.05) in the ASD group vs. the TD group for the duration (A: 0.110±0.013 vs 0.180±0.048, C: 0.140±0.024 vs 0.220±0.067, D: 0.130±0.050 vs 0.190±0.037, unit: s), time coverage (A: 22.0±5.4 vs 27.0±7.2, B: 27.0±4.7 vs 18.0±5.5, unit: %), occurrence(A: 1.93±0.52 vs 1.55±0.22,B: 2.08±0.46 vs 1.39±0.32,C: 2.10±0.49 vs 1.47±0.30,D: 1.78±0.19 vs 1.27±0.27, unit: times/s). Moreover, chi-square test did not supported the hypothesis that the microstates was independent zero (P<0.01), suggesting the dependence and information sharing between the microstates. The results of this study provided objective indicators and scientific basis for the assessment of autism.
张锁良, 万灵燕, 张志明, 康健楠, 李小俚, 庞姣. 自闭症谱系障碍儿童静息状态下脑电微状态研究[J]. 中国生物医学工程学报, 2021, 40(6): 653-661.
Zhang Suoliang, Wan Lingyan, Zhang Zhiming, Kang Jiannan, Li Xiaoli, Pang Jiao. Study on the Differences of Resting-State EEG Microstate in Children with Autism Spectrum Disorder. Chinese Journal of Biomedical Engineering, 2021, 40(6): 653-661.
[1] Michael G, Chang M, Krasne V,et al. Frequency of epileptiform EEG abnormalities in a sequential screening of autistic patients with no known clinical epilepsy from 1996 to 2005[J]. Epilepsy and Behavior, 2006, 8(1): 267-271. [2] Zablotsky B, Black LI, Maenner MJ, et al. Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014 national health interview survey.[J]. National Health Statistics Reports, 2015(87): 1-20. [3] 宋佳佳. 基于奇异谱分析算法的孤独症脑电特征提取及分类研究[D]. 保定: 河北大学,2020. [4] 周兢,李传江,张义宾.早期儿童语言发展与脑发育研究的进展[J].教育生物学杂志, 2016, 4(4): 159-168. [5] 刘阳,朱志军,曹满瑞,等.自闭症儿童早期大脑过度发育的sMRI研究[J]. 磁共振成像, 2020, 11(4): 264-269. [6] Lehmann D, Strik WK, Henggeler B, et al. Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: visual imagery and abstract thoughts [J]. International Journal of Psychophysiology, 1998, 29(1): 1-11. [7] Khanna A, Pascual-Leone A, Michel CM,et al. Microstates in resting-state EEG: current status and future directions[J]. Neuroscience and Biobehavioral Reviews, 2015, 49(1): 105-113. [8] Lopes da Silva F. Neural mechanisms underlying brain waves: from neural membranes to networks.[J]. Electroencephalography and Clinical Neurophysiology, 1991, 79(2): 81-93. [9] Dimitriadis SI, laskaris NA, micheloyannis S. Transition dynamics of EEG-based network microstates during mental arithmetic and resting wakefulness reflects task-related modulations and developmental changes [J]. Cognitive Neurodynamics, 2015, 9(4): 371-387. [10] Christoph M, Koenig T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review[J]. NeuroImage, 2018, 180(2): 577-593. [11] Britz J, Van De Ville D, Christoph M, et al. BOLD correlates of EEG topography reveal rapid resting-state network dynamics [J]. NeuroImage, 2010, 52(4): 1162-1170. [12] Anna C, Serge V, Frederic G, et al. EEG source imaging of brain states using spatiotemporal regression [J]. NeuroImage, 2014, 96(1): 106-116. [13] Lehmann D, Skrandies W. Reference-free identification of components of checkerboard-evoked multichannel potential fields [J]. Electroencephalography and Clinical Neurophysiology, 1980, 48(6): 609-621. [14] Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles [J]. Trends in Cognitive Sciences, 2010, 14(6): 277-290. [15] Musso F, Brinkmeyer J, Mobacher A, et al. Spontaneous brain activity and EEG microstates:a novel EEG/fMRI analysis approach to explore resting-state networks [J]. NeuroImage, 2010, 52(4): 1149-1161. [16] Pascual-Marqui RD, Michel CM, Lehmann D. Segmentation of brain electrical activity into microstates: model estimation and validation [J]. IEEE Transactions on Bio-medical Engineering, 1995, 42(7): 658-665. [17] Tomescu MI, Rihs TA, Robert B, et al. Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents:a vulnerability marker of schizophrenia[J]. Schizophrenia Research, 2014, 157(3): 175-181. [18] Brunet D, Micah M, Christoph M, et al. Spatiotemporal analysis of multichannel EEG: Cartool [J]. Computational Intelligence and Neuroscience, 2011, 2011(1): 813870-813884. [19] Von WF, Tagliazucchi E, Laufs H. Information-theoretical analysis of resting state EEG microstate sequences-non-Markovianity, non-stationarity and periodicities[J]. NeuroImage, 2017, 158(1): 99-111. [20] Tomescu MI, Rihs TA, Rochas V, et al. From swing to cane:sex differences of EEG resting-state temporal patterns during maturation and aging[J]. Developmengtal Cognitive Neuroscience, 2018, 31(1): 58-66. [21] Emiliano S, Arjun R, Christian S, et al. EEG microstate correlates of fluid intelligence and response to cognitive training [J]. Brain Topography, 2017, 30(4): 502-520. [22] Han Yuan, Zotev V, Phillips R, et al. Spatiotemporal dynamics of the brain at rest — exploring EEG microstates as electrophysiological signatures of BOLD resting state networks [J]. Neuroimage, 2012, 60(4): 2062-2072. [23] Jia Huibin, Yu Dongchuan. Aberrant intrinsic brain activity in patients with autism spectrum disorder:insights from EEG microstates[J]. Springer US, 2019, 32(2): 295-303. [24] Shulman GL, Pope DL, Astafiev S, et al. Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network [J]. The Journal of Neuroscience, 2010, 30(10): 3640-3651. [25] Taylor KS, Seminowicz DA, Davis KD. Two systems of resting state connectivity between the insula and cingulate cortex[J]. Human Brain Mapping, 2009, 30(9): 2731-2745. [26] Koenig T, Studer D, Hubl D, et al. Brain connectivity at different time-scales measured with EEG [J]. Philosophical Transactions of the Royal Society B, 2005, 360(1457): 1015-1024. [27] Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism.[J]. Trends in Neurosciences, 2008, 31(3): 137-145. [28] Samson F, Mottron L, Soulières I, et al. Enhanced visual functioning in autism: an ALE meta-analysis [J]. Human Brain Mapping, 2012, 33(7): 1553-1581. [29] Yao Zhijun, Hu Bin, Xie Yuanwei, et al. Resting-state time-varying analysis reveals aberrant variations of functional connectivity in autism [J]. Frontiers in Human Neuroscience, 2016, 10(1): 1-11. [30] Li Yanwei, Yu Dongchuan. Weak network efficiency in young children with autism spectrum disorder:evidence from a functional near-infrared spectroscopy study[J]. Brain and Cognition, 2016, 108(1): 47-55.