Research on Capillary Growth Algorithm Based on Heterogeneous Microvascular Trees
Huang Wenjie1, Shen Huanghui1, Fang Luping1, Ning Gangmin2, Pan Qing1#*
1(College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China) 2(Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China)
摘要微血管网络在机体生理功能的实现中起着至关重要的作用,其生成研究为受损微血管网络的修复提供了潜在的治疗方向。目前,已有研究完成了虚拟异质性微血管树的生成,但由于显微图像无法清晰呈现毛细血管分布,开发符合真实生长规律的毛细血管生长算法成为微血管网络生成领域的关键挑战。本研究提出了一种基于异质性微血管树的毛细血管生长算法。研究首先获取3个大鼠肠系膜微血管网络结构,剔除网络中的毛细血管,并分别提取独立的微动脉树和微静脉树;随后,设计并实现了以末端出芽方式进行毛细血管生长的算法,结合归巢机制引导毛细血管生长,模拟其生理特性;最终,通过生理性修剪和优化,构建出虚拟异质性微血管网络。实验对于每个大鼠肠系膜微血管网络记录了30次虚拟微血管网络生成,并对生成网络与真实网络的血管分形维数(FD)和血管密度(VD)进行对比分析。结果显示,生成网络与真实网络的FD和VD均高度相似(FD: 1.548±0.025 vs 1.565±0.005, P>0.05,VD: 0.060±0.004 vs 0.059±0.003, P>0.05),验证了算法在模拟毛细血管生长上的合理性。此外,通过分形维数空间分布观察,生成网络与真实网络在局部复杂度分布上基本一致。本研究提出的算法为基于异质性微血管树的虚拟微循环网络生成提供了新思路。
Abstract:The microvascular network plays a critical role in the realization of physiological functions in the body, and the research on this topic can offer potential therapeutic directions for repairing damaged microvascular networks. While previous studies have achieved the generation of virtual heterogeneous microvascular trees, the inability of microscopic images to clearly present capillary distributions pose a key challenge in developing capillary growth algorithms that align with natural growth patterns. This study proposed a capillary growth algorithm based on heterogeneous microvascular trees. Using microvascular networks from three rat mesenteries, the capillaries were first removed from the networks, and the independent arteriolar and venular trees were extracted. Subsequently, a terminal sprouting-based capillary growth algorithm was designed and implemented, incorporating a homing mechanism to guide capillary growth and simulate physiological characteristics. Ultimately, through physiological pruning and optimization, a virtual heterogeneous microvascular network was constructed. The study recorded 30 instances of virtual microvascular network generation and conducted comparative analyses of the fractal dimension (FD) and vascular density (VD) between the generated networks and real networks. Results showed a high degree of similarity in spatial complexity and vascular density between the generated and real networks(FD: 1.548±0.025 vs 1.565±0.005, P>0.05,VD: 0.060±0.004 vs 0.059±0.003, P>0.05), validating the algorithm′s rationality in simulating capillary growth. Furthermore, an examination of the spatial distribution of fractal dimensions revealed that the generated networks closely resembled real networks in terms of local complexity distribution. This study provided a novel approach for generating virtual microcirculation networks based on heterogeneous microvascular trees.
黄文杰, 沈黄荟, 方路平, 宁钢民, 潘清. 基于异质性微血管树的毛细血管生长算法研究[J]. 中国生物医学工程学报, 2025, 44(3): 257-266.
Huang Wenjie, Shen Huanghui, Fang Luping, Ning Gangmin, Pan Qing. Research on Capillary Growth Algorithm Based on Heterogeneous Microvascular Trees. Chinese Journal of Biomedical Engineering, 2025, 44(3): 257-266.
[1] Kuschinsky W, Paulson OB. Capillary circulation in the brain[J]. Cerebrovascular and Brain Metabolism Reviews, 1992, 4(3): 261-286. [2] Tierno IS, Agarwal M, Matisioudis N, et al. Isolation of mouse retinal capillaries and subendothelial matrix for stiffness measurement using atomic force microscopy[J]. Jove-Journal of Visualized Experiments, 2024, 209: e66922. [3] He Li, Shang Yucheng, Zeng Jinfeng, et al. Technology for the formation of engineered microvascular network models and their biomedical applications[J]. Nano Convergence, 2024, 11: 10. [4] Blanco PJ, De Queiroz RAB, Feijóo RA. A computational approach to generate concurrent arterial networks in vascular territories[J]. International Journal for Numerical Methods in Biomedical Engineering, 2013, 29(5): 601-614. [5] Linninger AA, Gould IG, Marinnan T, et al. Cerebral microcirculation and oxygen tension in the human secondary cortex[J]. Annals of Biomedical Engineering, 2013, 41(11): 2264-2284. [6] Lee TR, Hong JA, Yoo SS, et al. A computational modeling of blood flow in asymmetrically bifurcating microvessels and its experimental validation[J]. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34(6): e2981. [7] Jaquet C, Najman L, Talbot H, et al. Generation of patient-specific cardiac vascular networks: a hybrid image-based and synthetic geometric model[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(4): 946-955. [8] Kopylova VS, Boronovskiy SE, Nartsissov YR. Multiparametric topological analysis of reconstructed rat brain arterial system[J]. Physical Biology, 2019, 16(5): 056002. [9] Ii S, Kitade H, Ishida S, et al. Multiscale modeling of human cerebrovasculature: A hybrid approach using image-based geometry and a mathematical algorithm[J]. PLoS Computational Biology, 2020, 16(6): e1007943. [10] Di Gregorio S, Fedele M, Pontone G, et al. A computational model applied to myocardial perfusion in the human heart: From large coronaries to microvasculature[J]. Journal of Computational Physics, 2021, 424: 109836. [11] Pan Qing, Shen Huanghui, Li Peilun, et al. In silico design of heterogeneous microvascular trees using generative adversarial networks and constrained constructive optimization[J]. Microcirculation, 2024, 31: e12854. [12] Gerhardt H, Golding M, Fruttiger M, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia[J]. Journal of Cell Biology, 2003, 161(6): 1163-1177. [13] 曹军, 廖福龙, 徐启华. 压力、剪应力和川芎嗪对大鼠脑微血管内皮细胞血管生成的影响[J]. 生物医学工程学杂志, 2004, 21(z1): 13-14. [14] Secomb TW, Alberding JP, Hsu R, et al. Angiogenesis: an adaptive dynamic biological patterning problem[J]. PLoS Computational Biology, 2013, 9(3): e1002983. [15] Alberding JP, Secomb TW. Simulation of angiogenesis in three dimensions: Application to cerebral cortex[J]. PLoS Computational Biology, 2021, 17(6): e1009164. [16] Pries AR, Secomb TW, Gaehtgens P, et al. Blood flow in microvascular networks. Experiments and simulation[J]. Circulation Research, 1990, 67(4): 826-834. [17] Pries AR, Reglin B, Secomb TW. Remodeling of blood vessels-responses of diameter and wall thickness to hemodynamic and metabolic stimuli[J]. Hypertension, 2005, 46(4): 725-731. [18] Pries AR, Höpfner M, Le Noble F, et al. The shunt problem: control of functional shunting in normal and tumour vasculature[J]. Nature Reviews Cancer, 2010, 10(8): 587-593. [19] Pries AR, Secomb TW, Gaehtgens P. Structural adaptation and stability of microvascular networks: Theory and simulations[J]. American Journal of Physiology, 1998, 275(2): 349-360. [20] Pan Qing, Wang Ruofan, Reglin B, et al. A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks[J]. Journal of Biomechanical Engineering-Transactions of the Asme, 2014, 136(1): 011009. [21] Smith AF, Nitzsche B, Maibier M, et al. Microvascular hemodynamics in the chick chorioallantoic membrane[J]. Microcirculation, 2016, 23(7): 512-522. [22] Hartung G, Badr S, Mihelic S, et al. Mathematical synthesis of the cortical circulation for the whole mouse brain-part II: Microcirculatory closure[J]. Microcirculation, 2021, 28(5): e12687. [23] Di Ieva A. The fractal geometry of the brain: an overview[J]. Advances in Neurobiology, 2024, 36: 3-13. [24] Nayak SR, Mishra J, Palai G. Analysing roughness of surface through fractal dimension: A review[J]. Image and Vision Computing, 2019, 89: 21-34. [25] Li Peilun, Pan Qing, Jiang Sheng, et al. Visualizing the spatiotemporal pattern of yolk sac membrane vascular network by enhanced local fractal analysis[J]. Microcirculation, 2022, 29(6-7): e12746. [26] Mada J, Tokihiro T. Pattern formation of vascular network in a mathematical model of angiogenesis[J]. Japan Journal of Industrial and Applied Mathematics, 2022, 39(1): 351-384. [27] Fu Ying, Sun Mingzhu, Zhao Xin, et al. A novel way for microvascular network pattern formation based on a pre-pattern guidance mechanism[J]. Chaos Solitons & Fractals, 2024, 186: 115322. [28] Levy BI, Ambrosio G, Pries AR, et al. Microcirculation in hypertension-a new target for treatment?[J]. Circulation, 2001, 104(6): 735-740.