A Deep Convolutional Networks for Identifying Multiple Tissues from Colorectal Histologic Image of Whole Slide
Cai Chengfei1, Xu Jun1*, Liang Li2, Wei Jianhua2, Zhou Yangshu2
1Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing University of Information and Technology, Nanjing 210044, China 2Department of Pathology, Southern Medical University, Guangzhou 510515, China
[1] Chen W, Zheng R, Baade PD, et al. Cancer statistics, 2015[J]. Ca A Cancer Journal for Clinicians, 2016,66(2):115-32. [2] Xu Jun, Xiang Lei, Liu Qingshan, et al. Stacked sparse autoenconder (SSAE) for nuclei detection on breast cancer histopathology images[J]. IEEE Transactions on Medical Imaging, 2016, 35(1):119-130. [3] Lan C, Heindl A, Huang X, et al. Quantitative histology analysis of the ovarian tumour microenvironment[J]. Scientific Reports, 2015, 5(2):16317. [4] Ginsburg S, Lee G, Ali S, et al. Feature importance in nonlinear embeddings (FINE): applications in digital pathology[J]. IEEE Trans Medical Imaging, 2015, 35(1):76-88. [5] Yuan Y, Failmezger H, Rueda O M, et al. Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling[J]. Science Translational Medicine, 2012, 4(157):157ra143. [6] Tamura H, Mori S, Yamawaki T. Textural features corresponding to visual perception[J]. IEEETrans Systems Man & Cybernetics, 1978, 8(6):460-473. [7] Bianconi F, Álvarez-Larrán A, Fernández A. Discrimination between tumour epithelium and stroma via perception-based features[J]. Neurocomputing, 2015, 154:119-126. [8] Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. IEEE Trans Systems Man & Cybernetics, 1973, SMC-3(6):610-621. [9] Schad LR, Härle W, Zuna I, et al. Magnetic resonance imaging of intracranial tumors: tissue characterization by means of texture analysis[J]. Zeitschrift Für Medizinische Physik, 1992, 2(1):12-17. [10] Lerski RA, Schad LR. The use of reticulated foam in texture test objects for magnetic resonance imaging[J]. Magnetic Resonance Imaging, 1998, 16(9):1139-1144. [11] Kather JN, Weis CA, Bianconi F, et al. Multi-class texture analysis in colorectal cancer histology[J]. Scientific Reports, 2016, 6:27988. [12] Linder N. Identification of tumor epithelium and stroma in tissue microarrays using texture analysis[J]. Diagnostic Pathology, 2012, 7(1): 1-11. [13] Turkki R, Linder N, Holopainen T, et al. Assessment of tumour viability in human lung cancer xenografts with texture-based image analysis[J]. Journal of Clinical Pathology, 2015, 68(8):614-621. [14] Barker J, Hoogi A, Depeursinge A, et al. Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles[J]. Medical Image Analysis, 2015, 30:60-71. [15] Koushik, Jayanth. Understanding convolutional neural networks[C]//29th Conference on Neural Information Processing Systems (NIPS 2016). Barcelona: The California Institute of Technology and Bell Laboratories,2016. [16] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[J]. Journal of Machine Learning Research, 2011, 15. [17] Hinton G E, Srivastava N, Krizhevsky A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science, 2012,3(4):212-223. [18] May M. A better lens on disease[J]. Scientific American, 2010, 302(5):74-77. [19] Jia Yangqing, Shelhamer E, Donahue J, et al. Caffe: convolutional architecture for fast feature embedding[J]. Eprint Arxiv, 2014:675-678. [20] Xu Jun, Luo Xiaofei, Wang Guanghao, et al. A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images[J]. Neurocomputing, 2016, 191:214-223.