网站首页            期刊简介             编委会             投稿指南             期刊订阅             下载中心             在线留言            联系我们             English
  2025年4月5日 星期六  
文章快速检索
中国生物医学工程学报
  论文 本期目录 | 过刊浏览 | 高级检索 |
基于改进型迭代NR的磁感应断层成像图像重建算法
1 大连理工大学电子信息与电气工程学部,辽宁 大连 116023
2 大连医科大学附属第一医院神经内科, 辽宁 大连 116011
An Improved Image Reconstruction Algorithm Based on Iteration NR in Magnetic Induction Tomography
1 Faculty of Electronic Information and Electrical Engineering,Dalian University of Technology,Dalian 116023, Liaoning, China
2 Department of Neurology,First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
全文: PDF (3204 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 在磁感应断层成像中,图像重建是一个典型的病态问题,其数值解存在不稳定性。针对此问题,提出一种基于加权矩阵和L1范数正则化的改进型迭代NewtonRaphson (NR)算法。该算法通过在目标函数的误差项中引入加权矩阵,同时在L2范数正则化惩罚项的基础上引入L1范数正则化,改善图像重建解的病态性。 设置3种典型的模型,分别对有无噪声的数据进行分析,将本算法与Tikhonov正则化算法和迭代NR算法进行对比。在无噪声数据分析中,所提算法相对Tikhonov正则化算法和迭代NR算法的相对图像误差减小011~014,相关系数提高13%~17%。在有噪声数据中,所提算法相对于Tikhonov正则化算法和迭代NR算法的相对图像误差减小006~009,相关系数提高7%~10%。提出的算法成像性能较好,且抗噪性能较强,为进一步的实验重建精确性提供理论依据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩敏1* 薛玉艳1 秦攀1 韩杰2 姜长斌2
关键词 磁感应断层成像图像重建L1范数正则化迭代NewtonRaphson    
Abstract:The image reconstruction process is a typical illposed problem in magnetic induction tomography (MIT), in which the numerical solution is unstable. To solve this problem, an improved iteration NewtonRaphson algorithm based on weighted matrix and L1norm regularization is improved. The proposed method adds the weight matrix in the objective function and adds L1norm regularization term in L2norm regularization penalty term. The analysis is made for three typical models in the data with and without noise, respectively. And the proposed algorithm is contrasted with Tikhonov regularization algorithm and iterative NR algorithm. In the data without noise, relative to Tikhonov regularization algorithm and iterative NR algorithm, the relative error is reduced by 011-014. And then, the correlation coefficient is raised by 13%-17%. The algorithm has good performance in imaging. In the data with noise, the relative error is reduced by 006-009, and the correlation coefficient is raised by 7%-10% in the proposed algorithm. The algorithm has good antinoise performance, which has offered theory basis for the study of reconstruction accuracy.
Key wordsmagnetic induction tomography (MIT)    image reconstruction    L1norm regularization    iteration NewtonRaphson
    
基金资助:中央高校基本科研业务费专项项目(DUT13JB08);大连市科技局科技计划项目(2012C014)
引用本文:   
韩敏1* 薛玉艳1 秦攀1 韩杰2 姜长斌2. 基于改进型迭代NR的磁感应断层成像图像重建算法[J]. 中国生物医学工程学报, 2015, 34(2): 190-197.
Han Min1*Xue Yuyan1Qin Pan1Han Jie. An Improved Image Reconstruction Algorithm Based on Iteration NR in Magnetic Induction Tomography. journal1, 2015, 34(2): 190-197.
链接本文:  
http://cjbme.csbme.org/CN/10.3969/j.issn.0258-8021.2015. 02.009     或     http://cjbme.csbme.org/CN/Y2015/V34/I2/190
版权所有 © 2015 《中国生物医学工程学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发